• 제목/요약/키워드: Optical application

검색결과 1,871건 처리시간 0.028초

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • 조명전기설비학회논문지
    • /
    • 제24권11호
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Optical Simulation of Direct-type Backlight Unit for Medical Application

  • Han, Jeong-Min;Han, Jin-Woo;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.16-19
    • /
    • 2008
  • In this study, it was investigated about optical simulation in direct-type backlight design. Direct-type backlight has been used high-brightness backlight such as medical LCD application. The key parameter in designing direct-type backlight was consists of three geometrical dimension such as the distance of two lamps, the gap of lamp and reflection plate and the number of lamps. It has many of variations in optical design and it causes the different properties in backlight system. It shows the best values of above parameters; 26 mm of the distance of two lamps, 4.5 mm of the gap of lamp and reflection plate and 16 lamps. And we produced the specimen as above condition, and acquired good result in backlight such as the value of the brightness is 6423 nit in center of emission area and less than 5 % in brightness uniformity. It shows the effective ways of designing backlight system using optical simulation method for medical LCD application.

Holographic Reconstruction of Finite Airy Beams with Self-Healed and Multiplexed Features

  • Choi, Dawoon;Hong, Keehoon;Kim, Kyoung-Youm;Lee, Kyookeun;Lee, Il-Min;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.793-798
    • /
    • 2014
  • To generate finite-power Airy beams, a novel holographic method is proposed. We record the interference pattern between an Airy beam (signal beam) and plane wave (reference beam) on a photopolymer, then decode the hologram by illuminating with the reference beam. The reconstructed beams still present the non-diffraction, acceleration, and self-healing features of optical Airy beams. In addition, angular multiplexing of two Airy beams with opposite acceleration directions is presented.

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

스마트 폰을 이용한 광 통신망 감시 시스템 (Optical Network Monitoring System Using Smart Phone)

  • 정소기
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.218-226
    • /
    • 2017
  • 본 논문은 스마트 폰을 활용하여 광 전송망 구간을 실시간으로 감시하는 시스템이다. 기존의 광 통신망 구간은 스마트 폰과 접속함체의 여장판에 스위치 설치를 활용하여 현장의 상황을 실시간으로 인지 하는 시스템이 없었다. 본 연구는 스마트 폰의 Application과 접속함체 스위치를 이용하여 실시간으로 유지보수를 할 수 있도록 했다. 스마트 폰 Web은 접속함체 장애 위치를 찾는데 유용하며, 접속함체 내부에 있는 여장판 벨크로 타이를 분리하면 스위치가 작동하여 심선의 밴딩을 주어서push message를 발생하게 한다. 접속함체 작업과 장애가 발생하면 스마트폰을 이용하여 OTDR측정을 하여 위치 추적을 할 수 있도록 하는 연구이다. 스마트 폰을 이용하여 실시간 광케이블 구간을 관리함으로써 장애 시간 단축과 전송망 품질을 효율적으로 유지보수 할 수 있다.

전력용 광 전류, 전압 센서 연구 동향 조사 (Survey of Optical Current Sensor and Optical Voltage Sensor for Electric Power Systems)

  • 김영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.270-273
    • /
    • 2001
  • In this paper, some of optical current transformers and optical potential transformers for extra high voltage system are introduced. The optical current transformer and optical potential transformer will be adopted in the near future, because of increasing demands of high accuracy and good reliability of current transformer and potential transformer. The application cases of optical current transformers and optical potential transformers are also introduced.

  • PDF