• Title/Summary/Keyword: Optical alignment

Search Result 578, Processing Time 0.032 seconds

Physicochemical Characteristics of UV/Ozone Treated Polydimethylsiloxane(PDMS) Wrinkle Structures (UV/Ozone 처리를 통한 Polydimethylsiloxane(PDMS) 주름 구조의 물리화학적 특성 분석)

  • Park, Hong-Gyu;Park, Seung-Yub
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.321-327
    • /
    • 2022
  • In this paper, a wrinkled structure was formed on the PDMS surface through UV/Ozone treatment, and the wrinkle structure formation mechanism was revealed through physicochemical characterization. A wrinkle structure was formed on the PDMS surface through UV/Ozone treatment for 30 min, and periodic wrinkle formation on the PDMS surface was confirmed by cross-sectional imaging of the scanning electron microscope. In addition, through x-ray photoelectron spectroscopy spectral analysis, it was confirmed that the silica-like-surface of SiOx on the PDMS surface was formed by UV/Ozone. The results of this study not only improve the understanding of the mechanism of wrinkle structure formation on the PDMS surface by UV/Ozone treatment, but also can be used as a basic study to adjust the amplitude and period of the wrinkle structure according to UV/Ozone irradiation conditions in the future.contact angles and the surface energies of FSAMs, it was confirmed that pretilt angles of LC molecules increased according to the alkyl chain length. High optical transparency and uniform homeotropic LC alignment characteristics of FSAMs showed the possibility of FSAMs as an LC alignment layers.

OPTICAL PERFORMANCE OF BREADBOARD AMON-RA IMAGING CHANNEL INSTRUMENT FOR DEEP SPACE ALBEDO MEASUREMENT (심우주 지구 반사율 측정용 아몬라 가시광 채널의 광학 시스템 제조 및 성능 평가)

  • Park, Won-Hyun;Kim, Seong-Hui;Lee, Han-Shin;Yi, Hyun-Su;Lee, Jae-Min;Ham, Sun-Jung;Yoon, Jee-Yeon;Kim, Sug-Whan;Yang, Ho-Soon;Choi, Ki-Hyuk;Kim, Zeen-Chul;Lockwood, Mike;Morris, Nigel
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.79-90
    • /
    • 2007
  • The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%($in\;14\;{\mu}m$) and the MTF of 35.3%(Nyquist frequency: $35.7\;mm^{-1}$) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.

A Study for the Limitation of Measurement Accuracy and Reliability of Autostigmatic Null lens System by Adjustment and Fixing Process (조정방식과 경통고정방식에 대한 자동무수차점 널 렌즈 광학계의 측정 정밀도 한계 및 신뢰도)

  • Lee, Young-Hun;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2005
  • The limitation of measurement accuracy and reliability of autostigmatic null lens system are studied for the cases of using inter-distance of null lenses as the adjustment factor of alignment and fixing the distance by mounting. If we investigate the first case, the wavefront aberration of null lens system is compensated by the adjustment process even though the shape of aspherical surface is not properly fabricated. As the result, it brings about the problem of measurement reliability. However, for the fixing process by mounting null lenses, it doesn't cause the reliability problem because the wavefront aberration of null lens system is not compensated. Further, the fixing process shows nearly same result in measurement accuracy to the adjustment process, that is, $0.0316{\lambda}$ vs. $0.0326{\lambda}$. So, we can conclude the setup for autostigmatic null lens system must be constituted by means of the fixing process. Meanwhile, we introduce and define the alignment aperture on aspheircal mirror, which can be approximated as spherical zone for alignment of null lens system, and besides, we calculate the required fabrication accuracy of the zone for the necessary measurement accuracy.

Optical Encryption using a Random Phase Image and Shift Position in Joint Transform Correlation Plane (결합 변환 상관 평면의 이동 변위와 무작위 위상 영상을 이용한 광 암호화 시스템)

  • Shin, Chang-Mok;Lee, Woo-Hyuk;Cho, Kyu-Bo;Kim, Soo-Joong;Seo, Dong-Hoan;Lee, Sung-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Most optical security systems use a 4-f correlator, Mach-Zehnder interferometer, or a joint transform correlator(JTC). Of them, the JTC does not require an accurate optical alignment and has a good potential for real-time processing. In this paper, we propose an image encryption system using a position shift property of the JTC in the Fourier domain and a random phase image. Our encryption system uses two keys: one key is a random phase mask and the other key is a position shift factor. By using two keys, the proposed method can increase the security level of the encryption system. An encrypted image is produced by the Fourier transform for the multiplication image, which resulted from adding position shift functions to an original image, with a random phase mask. The random phase mask and position shift value are used as keys in decryption, simultaneously. For the decryption, both the encrypted image and the key image should be correctly located on the JTC. If the incorrect position shift value or the incorrect key image is used in decryption, the original information can not be obtained. To demonstrate the efficiency of the proposed system, computer simulation is performed. By analyzing the simulation results in the case of blocking of the encrypted image and affecting of the phase noise, we confirmed that the proposed method has a good tolerance to data loss. These results show that our system is very useful for the optical certification system.

Phase-shifting diffraction grating interferometer for testing concave mirrors (오목 거울 측정용 위상천이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2003
  • We present a novel concept of a phase-shifting diffraction-grating interferometer, which is intended for the optical testing of concave mirrors with high precision. The interferometer is configured with a single reflective diffraction grating, which performs multiple functions of beam splitting, beam recombination, and phase shifting. The reference and test wave fronts are generated by means of reflective diffraction at the focal plane of a microscope objective with large numerical aperture, which allows testing fast mirrors with low f-numbers. The fiber-optic confocal design is adopted for the microscope objective to focus a converging beam on the diffractive grating, which greatly reduces the alignment error between the focusing optics and the diffraction grating. Translating the grating provides phase shifting, which allows measurement of the figure errors of the test mirror to nanometer accuracy.

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

Fabrication Thermal Responsive Tunable ZnO-stimuli Responsive Polymer Hybrid Nanostructure

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Hwang, Ki-Hwan;Ju, Dong-Woo;Jeon, So-Hyoun;Seo, Hyeon-Jin;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.2-429.2
    • /
    • 2014
  • ZnO nanowire is known as synthesizable and good mechanical properties. And, stimuli-responsive polymer is widely used in the application of tunable sensing device. So, we combined these characteristics to make precise tunable sensing devise. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using nanosphere template with various conditions via hydrothermal process. Also, pH-temperature dependant tuning ability of nanostructure was studied. The brief experimental scheme is as follow. First, Zno seed layer was coated on a si wafer ($20{\times}20mm$) by spin coater. And then $1.15{\mu}m$ sized close-packed PS nanospheres were formed on a cleaned si substrate by using gas-liquid-solid interfacial self-assembly method. After that, zinc oxide nanowires were synthesized using hydrothermal method. Before the wire growth, to specify the growth site, heat treatment was performed. Finally, NIPAM(N-Isopropylacrylamide) was coated onto as-fabricated nanostructure and irradiated by UV light to form the PNIPAM network. The morphology, structures and optical properties are investigated by FE-SEM(Field Emission Scanning electron Microscopy), XRD(X-ray diffraction), OM(Optical microscopy), and WCA(water contact angle).

  • PDF

Immersion grating mount design of IGRINS

  • Moon, Bong-Kon;Wang, Weisong;Park, Chan;Lee, Sung-Ho;Yuk, In-Soo;Chun, Moo-Young;Lee, Han-Shin;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.153.2-153.2
    • /
    • 2011
  • The IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). Immersion grating is a key component of IGRINS, which disperses the input ray by using a Silicon material with a lithography technology. Opto-mechanical mount for the immersion grating is important to keep the high spectral resolution and the optical alignment in a cold temperature of $130{\pm}0.06K$. The optical performance of immersion grating can maintain within the de-center tolerance of ${\pm}0.05mm$ and the tip-tilt tolerance of ${\pm}1.5arcmin$. The mount mechanism utilizes the flexure and the kinematic support design to satisfy the requirement and the operation condition. When the IGRINS system is cooled down to a cold temperature, three flexures compensate the thermal contraction stress due to the different material between the immersion grating and the mounting part(Aluminum 6061). They also support the immersion grating by an appropriate preload. Thermal stability is controlled by a copper strap with proper dimensions and a heater. Generally structural and thermal analysis was performed to confirm the mount mechanism. This talk presents the opto-mechanical mount design of the immersion grating of IGRINS.

  • PDF

Polarization Analysis of Composite Optical Films for Viewing Angle Improvement of Liquid Crystal Display (액정 디스플레이 시야각 향상을 위한 복합판의 편광특성 분석)

  • Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Yong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • We suggest a new method to determine the off-alignment error of the composite film, together with in-plane($R_{in}$) and out-of-plane retardation($R_{th}$) of the compensation film, simultaneously. The composite film consists of a polarizing film and a compensation film for improvement of viewing angle of a liquid crystal display. We regarded the compensation film as o-plate with its optic axis along an arbitrary direction. By using an extended Jones matrix method, the polarization characteristics of the composite film are examined. The calculated Fourier constants, ($\alpha$, $\beta$) curves of the composite film as the azimuth angle is varied at the incident angles of $0^{\circ}$ and $50^{\circ}$, respectively, are used to determine the axis misalignment, the tilt angle and the azimuth angle of the compensation film by adopting the linear regressional analysis technique. Since this method can be applied for the inspection of the composite film even after laminating the polarizing film and the compensation film, it will be useful for simplifying the manufacturing process and reducing the production cost of liquid crystal display panels.