• Title/Summary/Keyword: Optical Transparency

Search Result 315, Processing Time 0.03 seconds

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Synthesis of transparent diamond-like carbon film on the glass by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD법에 의한 투명 다이아몬드상 탄소 박막 합성)

  • Kim, Tae-Gyu;Shin, Yeong-Ho;Cho, Hyun;Kim, Jin-Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.190-193
    • /
    • 2012
  • Transparent diamond-like carbon (DLC) films were synthesized on glass using radio frequency plasma enhanced chemical vapor deposition method from the gas mixture of $CH_4$, $SiH_4$ and Ar. The pressure, the rf-power, $CH_4/SiH_4/Ar$ ratio, and the deposition time were 0.1Torr, 100W, 20 : 1 : 1, and 20 min, respectively. The optical transmittances of DLC-deposited glass and uncoated glass were compared with each other in the visible light regions. The DLC-deposited glass showed transmittance of approximately 83 % and 95 % as compared to the uncoated glass for the wavelength of 380 nm and 500 nm, respectively. The hardness and roughness of DLC-coated glass have been measured by nanoindentation and AFM, respectively. The DLC-coated glass showed a little less or similar optical transmittance compared to the uncoated glass, while the hardness of DLC-coated glass was 2.5 times higher than that of the uncoated glass. The deposited DLC film had the very smooth surface and was thicker than 150 nm after deposition for 20 min.

Characterization of PET films coated with organic-inorganic hybrid coating system containing surface modified zirconia (표면 개질된 지르코니아를 함유한 유-무기 하이브리드 코팅액으로 도포된 PET 필름의 특성)

  • Lee, Soo;Kim, Sang Yup;Kim, Young Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.595-605
    • /
    • 2018
  • In recent years, researches on organic-inorganic coating films have conducted a nanocomposite system composed of organic resin matrices having excellent flexibility and chemical stability and inorganic materials having excellent mechanical properties. The o-phenylphenoxyethyl acrylate (OPPEA) used as the acrylate monomer has a high refractive index of 1.58, and the bisphenol A ethoxylate diacrylate (BAEDA) has a low refractive index but improves the chemical stability of the organic resin. In addition, zirconia used as an inorganic material exhibits excellent durability and optical properties. In this study, the BAEDA contents in acrylate monomer were controlled to produce a film with suitable optical transparency. And optimum conditions were established by comparing the changes in surface properties of PET films detected with pencil hardness tester, Abbe's refractometer, and UV-vis spectrophotometer. The hydrophobicity and the dispersibility of zirconia in acrylate monomer were much improved after modification with ${\gamma}$-methacryloxypropyltrimethoxysilane (MPS), which is a silane coupling agent. And the existence of ester C=O bond peak at $1716cm^{-1}$ introduced by MPS through FT-IR ATR spectrophotometer confirmed the completion of surface modification of zirconia with MPS. In addition, the presence of silicon atom on the surface modified zirconia was also proved using X-ray fluorescence spectrometer. When the photocurable hybrid coating was prepared by introducing chemically modified zirconia into acrylate monomer, the refractive index of this coated PET film was improved by 1.2%, compared to the only acrylate coated PET film. The homogeneous distribution of zirconia in acrylate coating layer on PET film was also identified through SEM/EDS mapping analysis technique.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Three-Dimensional Approaches in Histopathological Tissue Clearing System (조직투명화 기술을 통한 3차원적 접근)

  • Lee, Tae Bok;Lee, Jaewang;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

Characteristics of TiO2 and Ag/TiO2 optical thin film by Co-sputtering method (동시 스퍼터링법에 이용하여 제작한 TiO2와 Ag/TiO2 광학 박막의 특성)

  • Kim, Sang-Cheol;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun;Kim, Goo-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.168-173
    • /
    • 2005
  • Ag-doped $TiO_2$ thin films were prepared by RF magnetron co-sputtering method, and their physical and chemical properties were examined as a function of calcination temperature. XRD results showed that the crystallite size of Ag-doped films was smaller than that of the $TiO_2$ thin films. SEM results showed that the particle size of $Ag/TiO_2$ film was smaller and more uniform than pure $TiO_2$ film. The films had high transparency in the visible range. The films calcined at $600^{\circ}C$ were the anatase phase, and the films calcined at $900^{\circ}C$ were a mixture of anatase and rutile phases. The absorption edge of films calcined at $900^{\circ}C$ was red-shifted. This is due to the augmented absorption resulting from the phase transformation from anatase to rutile phase. And the transmittance of films decreased by the light scattering and absorption in the films. Photocatalytic activity of $Ag/TiO_2$ thin films was higher than that of the pure $TiO_2$ thin films.

Weatherability of Organic-Inorganic Hybrid Coating Agents with N-Triethoxy silyl propyl quinine urethane (N-Triethoxy silyl propyl quinine urethane을 도입한 유-무기 복합 코팅제의 내후성)

  • Lee, Man Sung;Jo, Nam-Ju
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • Recently polycarbonate material has been utilized as windows in aircraft, buildings, and optical lens. However, while polycarbonate has excellent optical transparency, impact strength and many beneficial mechanical properties, it possesses poor abrasion resistance and weatherability. Then, there is a need for developing optically clear, anti-abrasive and weather resistant hard coating agents for polycarbonate. In this study, N-triethoxy silyl propyl quinine urethane(TESPQU) was synthesized with quinine and 3-isocyanato propyl triethoxy silane(3-IPTES). In order to introduce optically active silane in the main siloxane network, TESPQU was co-hydrolysed and co-condensed with methyl triethoxy silane(MTES) under acidic conditions. Polycarbonate sheets were coated with silica coating agents by the sol-gel method, and their abrasion resistance, ability of UV absorption and weatherability were evaluated. Coating agents containing hydroxybenzophenone as a UV absorber were also prepared to compare weatherability with TESPQU containing coating agent. TESPQU containing coating agent had good weatherability in accelerated QUV test.

  • PDF

Defect analysis of calcium fluoride single crystal substrates with (100) and (111) orientation ((100) 및 (111) 배향을 갖는 CaF2 단결정 기판의 결함 분석)

  • Ye-Jin Choi;Min-Gyu Kang;Gi-Uk Lee;Mi-Seon Park;Kwang-Hee Jung;Hea-Kyun Jung;Doo-Gun Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The CaF2 single crystal has notable characteristics such as a large band gap (12 eV), excellent transparency over a wide wavelength range, low refractive index and dispersion. Due to these outstanding properties, CaF2 single crystal has considered as a promising material for short-wavelength light sources in recent lithography processes. However, there is an inherent birefringence of the material at 157 nm and the resulting aberration can be compensated for through the combination of the (100) plane and the (111) plane. Therefore, it is necessary to investigate the characteristics according to the plane. In this study, we analyzed crystallinity, optical properties of commercial CaF2 single crystal wafers grown by the Czochralski method. In particular, through chemical etching under various conditions, it was confirmed that the shape of etch pits appears differently depending on the plane and the shape and array of specific etch pits affected by dislocations and defects were examined.