• Title/Summary/Keyword: Optical Transceiver

Search Result 84, Processing Time 0.021 seconds

Implementation of External Memory Expansion Device for Large Image Processing (대규모 영상처리를 위한 외장 메모리 확장장치의 구현)

  • Choi, Yongseok;Lee, Hyejin
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.606-613
    • /
    • 2018
  • This study is concerned with implementing an external memory expansion device for large-scale image processing. It consists of an external memory adapter card with a PCI(Peripheral Component Interconnect) Express Gen3 x8 interface mounted on a graphics workstation for image processing and an external memory board with external DDR(Dual Data Rate) memory. The connection between the memory adapter card and the external memory board is made through the optical interface. In order to access the external memory, both Programmable I/O and DMA(Direct Memory Access) methods can be used to efficiently transmit and receive image data. We implemented the result of this study using the boards equipped with Altera Stratix V FPGA(Field Programmable Gate Array) and 40G optical transceiver and the test result shows 1.6GB/s bandwidth performance.. It can handle one channel of 4K UHD(Ultra High Density) image. We will continue our study in the future for showing bandwidth of 3GB/s or more.

A study on the short-range underwater communication using visible LEDs (근거리 수중통신을 위한 가시광 LED 적용에 관한 연구)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.425-430
    • /
    • 2013
  • Robust and high speed underwater communication is severely limited when compared to communications in terrestial. In free space, RF communication operates over long distances at high data rates. However, the obstacle in seawater is the severe attenuation due to the conducting nature. Acoustic modems are capable of long range communication up to several tens of kilometers, but it has low data-rate, high power consumption and low propagation speed. An alternative means of underwater communication is based on optics, wherein high data rates are possible. In this paper, the characteristics of underwater channel in the range of visible wavelength is investigated. And the possibility of optical wireless communication in underwater is also described. The LED-based transceiver and CMOS sensor module are integrated in the system, and the performance of image transmission was demonstrated.

Ocean Fog Detection Alarm System for Safe Ship Navigation (선박 안전항해를 위한 해무감지 경보 시스템)

  • Lee, Chang-young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.485-490
    • /
    • 2020
  • Recently, amid active research on domestic shipbuilding industry and IT convergence technology, with the development of satellite detection technology for ship safety operation, ships monitored the movement of ships with the mandatory long-range identification & tracking of vessels and automatic identification system. It is possible to help safe navigation, but it is necessary to develop safety device that alert the marine officer who rely on radar to correct conditions in case of weightlessness. Therefore, an ocean fog alarm system was developed to detect and inform using photo sensors. The fabricated ocean fog detect and alarm system consists of a small, low-power optical sensor transceiver and data sensing processing module. Through experiment, it is confirmed that the fabricated ocean fog detect and alarm system measure the corresponding concentration of ocean fog for fogless circumstance and fogbound circumstance, respectively. Furthermore, the fabricated system can control RPM of ship engine according to the concentration of ocean fog, and consequently, the fabricated system can be applied to assistant device for ship safety operation.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.