• Title/Summary/Keyword: Optical Signal Generation

Search Result 109, Processing Time 0.027 seconds

A Frequency-Doubling Optoelectronic Oscillator using a Three-Arm Dual-Output Mach-Zehnder Modulator

  • Chong, Yuhua;Yang, Chun;Li, Xianghua;Ye, Quanyi
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.491-493
    • /
    • 2013
  • This paper proposes a frequency-doubling optoelectronic oscillator employing a novel three-arm dual-output Mach-Zehnder modulator (MZM). One output of the MZM generates the fundamental-frequency signal which is recycled by the microwave optical fiber link for oscillation, and the other output can generate the frequency-doubled signal. Experiment was conducted using a commercial two-arm MZM, a phase modulator, and an optical fiber link of 89 meters in length. A 19-GHz frequency-doubled signal was successively obtained with fundamental signal suppression more than 36 dB.

Efficient Single-Pass Optical Parametric Generation and Amplification using a Periodically Poled Stoichiometric Lithium Tantalate

  • Yu, Nan-Ei;Lee, Yong-Hoon;Lee, Yeung-Lak;Jung, Chang-Soo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.192-195
    • /
    • 2007
  • A high-conversion efficiency, nanosecond pulsed optical parametric generation and amplification with repetition rate of 20 kHz based on a periodically poled MgO-doped stoichiometric lithium tantalate was presented. Pumped by a Q-switched $Nd:YVO_4$ laser at 1064 nm with a pumping power of 4.8W, the generated output power was 1.6W for the signal and idler waves, achieving a slope efficiency of 50%. Using a seed source at signal wave the amplified signal output-pulse energy reached $65{\mu}J$. The obtained maximum gain was 72.4 dB.

The Transmit System for Connection System of Super High Speed Optical Fiber Subscriber (초고속 광 가입자 접속장치용 송신장치 설계)

  • Song, Hong-Jong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.14-26
    • /
    • 2011
  • In this paper, we've studied Optical Fiber Subscribe Transmit system. After receiving the ATM cell passing through the FIFO of the Asynchronous Transfer Method from the ATM Layer images to the VC4 signal payload passing through scrambling of the cell payload, HEC computation of the cell and inserting the Idle/Unassigned cell. At this time formed VC4 signal passing through the generating and inserting POH overhead at the same time indicating the start point of the cell by the H4 byte on the VC4 POH. This ATM cell transmits 155Mbps speed changing the optical signal after outputting the frame format at the STM-1 signal generation block through the AUG bus after generating J1 of the VC4 start point at the AU4 pointer generation block.

  • PDF

Millimeter-wave signal Generation using Heterodyne Technique (헤테로다인 기법을 이용한 밀리미터파 신호 생성)

  • 김정태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1334-1340
    • /
    • 2003
  • In this paper, We have proposed an Heterodyne technique to generate millimeter-wave signal. Microwave signals in cellular broadband mobile communication networks and distributed networks can favorably be generated and distributed by optical techniques. In principle, these techniques have already been investigated for optical control of phase- array antennas, characterization of photo-detector and phase locking of millimeter-wave oscillators and now being applied to wireless communications. The generation and transmission of millimeter-wave radio signals by optical means is of interest for future pico-cell broadband mobile communication system, especially for systems operating at frequencies of 300Hz.

Technological Trend of Optical Frequency Comb Generator (광 주파수 빗 발생기의 기술 동향)

  • Park, Jaegyu;Song, Minje;Han, Sang-Pil;Kim, Sungil;Song, Minhyup
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.91-98
    • /
    • 2019
  • Optical frequency comb generators have been investigated as a signal source capable of generating highly stabilized ultrafast pulse lasers. The precise control of the optical frequency comb spacing by RF clock signals has led to a revolutionary paradigm shift in the precise measurement of time and frequency. Optical frequency combs also have advantages such as stable frequency spacing, stable number of lines, and robustness. Owing to these characteristics, optical frequency combs have been applied to the fields of high precision optical clock, communication, spectroscopy, waveform generation, and astronomy. In this article, we introduce the properties (i.e., generation methods, advantages, and so on) of various optical frequency combs, and discuss the expected future technological trends and applications.

Optical Noise Removal in the Focal Plane of the Spaceborne Camera

  • Park, Jun-Oh;Jang, Won-Kweon;Kim, Seong-Hui;Jang, Hong-Sul;Lee, Seung-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.278-282
    • /
    • 2011
  • We discuss two possible optical noise sources in an electro-optic camera loaded on a low earth orbit satellite. The first noise source was a reflection at the window for signal rays incident upon the window which is placed before the FPA plane. The second noise source came from a reflection at the surface of the FPA cell when the signal flux is not entirely absorbed. We investigate the noise generation processes for two optical noise sources, and a parametric solution is used to estimate the optical noise effects.

Analyses of Spectral Behaviors of Semiconductor Lasers under Weak Optical Injection Locked to External Light Injected

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.556-560
    • /
    • 2009
  • We have investigated the spectral characteristics of semiconductor lasers locked to the external light injected from a modulated laser. study on FM sideband injection locking has shown that when SLs are locked to the target sidebands of the directly modulated ML, the presence of the unselected sidebands influences the resulting microwave signals. The unselected signals can produce the unwanted beat signals around the desired beat signal, which degrade the overall system performance. This analysis way to generate Giga HZ signal generation.

Intergrated circuit design of power-stabilizing circuitry for optical transmitter (광송신기용 광파워 안정화 회로의 집적회로 설계)

  • 이성철;박기현;정행근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.47-55
    • /
    • 1996
  • An optical transmitter, which is a key component of the optical transmission system, converts the electrical signal to optical signal and consists of a high-speed current-pulse driver for laser diode and low-speed feedback loops that stabilize optical power against aging, power supply voltage fluctuations, and ambient temperature changes. In this paper, the power-stabilizing part, which forms the bulk of the optical transmitter circuitry was designed in integrted circuits. Operational amplifiers and reference voltage generation circuits, which were identified as key building blocks for the power-stabilizing feedback loops, were designed and were subsequently verified through HSPICE simulations. The designed operational amplifier consists of a two-stage folded cascode amplifier and class AB output stage, whereas the reference voltage is obtained by bandgap reference circuits. Finally the power-stabilizing circuitry was laid out based on 3\mu$m CMOS design rules for fabrication.

  • PDF

Optical Millimeter-wave Signal Generation using Injection Locking Scheme (광주입 방법을 이용한 밀리미터파 신호 생성)

  • Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1076-1081
    • /
    • 2003
  • A new technique for generating millimeter-wave signals from a semiconductor laser is presented. The method multiples the signal frequency by using optical injection of short optical pulses at a sub-harmonic of the cavity round-trip frequency to drive the laser oscillating at its resonant frequency. A 32GHz signal is generated using a multisection semiconductor laser operated under continuous wave conditions, by injection optical pulses at a repetition rate equal to the fourth subhamonic(8GHz). The generated millimeter-wave signal exhibits a large submamonic suppression ratio(>17 dB), large frequency detuning range (>300 MHz) low levels of phase-noise(-77.5 dBc/Hz), and large locking (>400 MHz)

Track-following Control under Disk Surface Defect of Optical Disk Drive Systems (광디스크 드라이브의 디스크 표면 결함에 대한 트래킹 제어)

  • Jeong, Dong-Seul;Lee, Joon-Seong;Chung, Chung-Choo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.56-64
    • /
    • 2006
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives to reject disk runout was recently proposed based on both Coprime Factorization(CF) and Zero Phase Error Tracking(ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo systems can detect only racking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Therefore, it is very effective in runout control. Furthermore, this method can be applied to defective optical disk like surface defects on disk. Numerical simulation and experimental result show the proposed method effective.

  • PDF