• Title/Summary/Keyword: Optical Path

Search Result 497, Processing Time 0.035 seconds

Quasi-optical design and analysis of a remote steering launcher for CFETR ECRH system

  • Zhang Chao;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1619-1626
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher for NTM control based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the layout design and analysis of the quasi-optical system in the remote steering launcher. A 3D visual quasi-optical design tool has been developed for the quasi-optical system, which can parameterize modeling, perform general astigmatic beam calculation and show the accurate beam propagation path in the upper port. Three identical sets of quasi-optical modules are arranged in the launcher, and each one consists of two fixed double-curvature focusing mirrors, which focus and reflect the steering beams (- 12°-12°) from two square corrugated waveguides. The beam characteristics at the resonance layer are described, and the average beam radius is < 100 mm. The peak head loads on the surfaces of the two fixed mirrors are 1.63 MW/m2 and 1.52 MW/m2. The position and size of the beam channel in the blanket are obtained, and the opening apertures on the launcher-facing and plasma-facing sides of the blanket module are 0.54 m2 and 0.4 m2, respectively.

The World's Thinnest Graphene Light Source (세상에서 가장 얇은 그래핀 발광 소자)

  • Kim, Young Duck
    • Vacuum Magazine
    • /
    • v.4 no.3
    • /
    • pp.16-20
    • /
    • 2017
  • Graphene has emerged as a promising material for optoelectronic applications including as ultrafast and broadband photodetector, optical modulator, and nonlinear photonic devices. Graphene based devices have shown the feasibility of ultrafast signal processing for required for photonic integrated circuits. However, on-chip monolithic nanoscale light source has remained challenges. Graphene's high current density, thermal stability, low heat capacity and non-equilibrium of electron and lattice temperature properties suggest that graphene as promising thermal light source. Early efforts showed infrared thermal radiation from substrate supported graphene device, with temperature limited due to significant cooling to substrate. The recent demonstration of bright visible light emission from suspended graphene achieve temperature up to ~3000 K and increase efficiency by reducing the heat dissipation and electron scattering. The world's thinnest graphene light source provides a promising path for on-chip light source for optical communication and next-generation display module.

Study of aerosol-cloud interaction phenomena from satellite remote sensing and climate modeling

  • Nakajima, Teruyuki;Higurashi, Akiko;Kawamoto, Kazuaki;Okamoto, Hajime;Takemura, Toshihiko;Kuroda, Shunsuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.100-102
    • /
    • 1999
  • We have analyzed AVHRR global data set for obtaining aerosol and cloud microphysical parameters, i. e., optical thickness and size index of particle polydispersions. From the results, it is found that the cloud optical thickness increases with increasing aerosol column number, which seems to be caused mainly by decreasing cloud particle radius, The cloud liquid water path was observed to be relatively constant without a significant dependence on the aerosol number. Further comparison of the satellite results with a general circulation model simulation.

  • PDF

A Study on On-line 5 Degrees of Freedom Error Measurement using Laser Optical System (레이져 광학장치를 이용한 온라인 5 자유도 오차측정에 관한연구)

  • 김진상;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.375-378
    • /
    • 1995
  • Although laser interferometer measurement system has the advantage of range and accuracy, the traditional error measurement methods for geometric errors(two straightness and three angular errors) of a machine tool measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric error of a moving body, an on-line measurement system for simultaneous detection of the five error components of a moving axis is required. An on-line measurement system with 5 degrees of freedom was developed for geometric error detection. Performance verification of the system was performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a side of machine tool.

  • PDF

Safranine Penetration Path Observed by Optical Microscope in Four Korean Pine Wood Species

  • Chong, Song-Ho;Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.138-142
    • /
    • 2007
  • Optical microscope was used to observe the difference of safranine penetration in Pinus densiflora, Pinus rigida, Pinus koraiensis and Larix kaempferi grown in Korea. It was found that Pinus koraiensis contained the highest number of ray parenchyma and ray tracheids. In longitudinal direction, latewood penetration was found higher than that of earlywood. The number of resin canals was found highest in Pinus koraiensis and lowest in Pinus rigida. The resin canal conducted safranine higher than longitudinal tracheids. In longitudinal direction, safranine diffused from longitudinal tracheid to ray parenchyma through the cross-field pits and from the longitudinal resin canal to ray parenchyma or longitudinal tracheid. Safranine diffused from longitudinal tracheid to its neighboring tracheid through bordered pit or ray parenchyma through the cross-field pits.

  • PDF

Traffic Grooming and Wavelength Routing for All Optical WDM-Ring Network (전광 WDM 링 통신망에서 수요집적 및 광파장 경로설정)

  • 윤문길
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • In this paper, we address a problem of traffic grooming and wavelength routing in all optical WDM ring networks. Given a traffic demand for each node pair, we should aggregate the traffic onto lightpaths between pairs of nodes to transport the demand, and set up the routing path for each lightpath with minimum number of wavelengths to be assigned to lightpaths. In this paper, we formulate our problem as a mixed Integer Programming model. Owing to the problem complexity, it is hard to find an optimal solution for our problem. hence, we develop a heuristic algorithm to solve our problem efficiently. From the computational experiments, we can find the proposed heuristic is very satisfactory in both the computation time and the solution quality generated.

  • PDF

Null lens design for testing of elliptical surface (타원면경 측정 Null 렌즈 설계)

  • 김연수
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.246-249
    • /
    • 2000
  • The null lens is designed for testing the elliptical (conic constant>O) mirror which is the third mirror of the off-axis Three Mirror Anastigmat (TMA) designed as a high resolution camera for remote sensing. The mixed type design is proposed as a new design type which has a small annular flat mirror, but has as twice sensitivity as the autostigmatic type design. It is also shown that the null lens of the Mixed type is better than that of the autostigmatic type in terms of the sensitivity of the wavefront distortion which is given as the magnitude of optical path difference with respect to the change of each surface parameters such as the radius of curvature, thickness of lenses and tested mirror.

  • PDF

The study of property on the michelson interferometric microscopy (마이켈슨 간섭계형 현미경의 특성 연구)

  • 김경신;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.369-372
    • /
    • 1999
  • We have constructed an interferometric microscopy using a Michelson interferometer and a He-Ne laser. The three dimensional image was obtained by the interference from the reflected signal by a sample surface and from the reflected signal by a mirror. The axial resolution obtained by Michelson interferometric microscopy is as good as that of the white-light interferometer, but the same fringe is obtained when optical path difference is half-wavelength. The image from Michelson interferometric microscopy was compared with the images from the various types of confocal microscopy.

  • PDF

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

Spray Measurement Using Optical Line Patternator at High Ambient Pressure (광학 선형 패터네이터를 이용한 고압 환경 하에서의 분무 측정)

  • Koh Hyeonseok;Shin Sanghee;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • Optical Line Patternator(OLP) has been applied to get a distribution of the spray at high ambient pressure. OLP is a combined technique of extinction measurement and image processing. The attenuated intensity of laser beam after traversing spray region was measured by using a photo-detector, and the line image of Mie-scattering was captured simultaneously in the path of each laser beam by using a CCD camera. The distribution of extinction coefficient in the spray is obtained by processing these data with the algebraic reconstruction technique. From the distribution of extinction coefficient, the surface distribution of spray can be reconstructed. OLP does not use laser sheet but use laser beam so that the noise effect of multiple scattering, caused by increasing number density of droplet in high pressure environment, is reduced drastically. OLP is expected as a suitable method which can investigate the characteristics of relatively large spray under the high pressure environment such as liquid rocket engine.

  • PDF