• Title/Summary/Keyword: Optical MEMS

Search Result 163, Processing Time 0.032 seconds

A Study on the Design and Fabrication for the Micro-Mirror of Optical Disk System (광디스크용 마이크로미러의 설계 및 제작에 관한 연구)

  • 손덕수;김종완;임경화;서화일;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.211-220
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. A coupled simulation of gas flow and structural displacement of the micro mirror using the Finite-Element-Method is applied to this. The mirror was fabricated by using MEMS technology. Especially, the process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the Process reliability. The mirror size was 2.5mm${\times}$3mm and it needed about 35V for displacement of 3.2 ${\mu}$.

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Development of 3-dimensional Pattern measuring technique for Micro-Optic components (미소광부품의 3차원 미세 패턴 측정 기술 개발)

  • 박희재;김종원;이준식;이정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.128-131
    • /
    • 2002
  • Three Dimensional measuring system using optical interference is greatly needed for semiconductor surface or optical surface. The application of this system are : MEMS product, semiconductor surfaces, optical components, precise machined surface, etc. In this paper, Interferometry based measurement system is introduced, which is nondestructive and noncontact inspection system. This system have relatively many advantage, compared with AFM/STM, SEM, Stylus, etc. The developed system can measure the surface topography with high precision and resolution, and with few seconds. And the associated software algorithm is also developed for the ultra precision 3D measuring surface. Various samples that is measured using this system is showed in the latter of this paper.

  • PDF

Review on Reliability Test Method for Optical/Thermofluidic Micro Component (광열유체 마이크로 부품의 신뢰성 평가를 위한 시험법에 관한 고찰)

  • 이낙규;나경환;최현석;한창수
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.242-247
    • /
    • 2004
  • Literature review on reliability test method for developing high performance optical/thermofluidic components. Since the miniaturization by the conventional mechanical process is limited to milli-structure, i.e. $10^{-3}m$, new technology for fabricating of mechanical components is needed to match cost, reliability, and integrability criteria of micro-structure. Although numbers of various researches on MEMS/MOEMS devices and components, including material characterization, design and optimization, system validation, etc., the lack of standards and specifications make the researches and developments difficult. For that reason, this paper is intended to propose the methods of reliability test for measuring the mechanical property of optical/ thermofluidic components.

A Low Voltage Driven Electrostatic Micro Actuator with an Added Vertical Electrode for Optical Switching (추가된 수직전글을 구비한 저전압 구동의 광 스위칭용 정전구동 마이크로 액츄에이터)

  • Yoon, Yong-Seop;Bae, Ki-Deok;Choi, Hyung;Koh, Byung-Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • With the progress of optical communication technology recently, the development of micro actuator using MEMS technology has been made for optical switching. The actuation types are various; electrostatic, electromagnetic, and electrostatic +electromagnetic etc. Among them, the electrostatic type is the most popular because of the relative ease of fabrication, integration and shielding as well as low power consumption. However, it needs a high voltage to generate a larger driving force. To overcome this problem, we proposed a new type of electrostatic actuator with an extra vertical electrode in addition to the horizontal one. The vertical electrode also lays a role of making the stable angular rotation as a stopper. From the theoretical analysis and experiment, we find the actuation voltage can be reduced up to 50 % of that of the conventional one.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Stress Induced Gigantic Piezoelectricity of PZT thin films for Actuated Mirror Array

  • Suzuki, Hisao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.591-596
    • /
    • 2006
  • Lead zirconate titanate(PZT) thin films have been attracting worldwide interests in exploring their potential properties [1-3] or the origins [4-6] of their excellent dielectic, ferroelectric and piezoelectric properties near the morphotropic phase boundary (MPB). PZT thin films are expected to apply to the memory devices, micro electro mechanical systems (MEMS), and display because of their superior ferroelectric, pyroelectric, piezoelectric and electron emission properties. In this study, high- performance piezoelectric PZT thin films for actuated mirror array and optical scanner were developed by controlling the several factors, such as molecular-designed precursor, seeding layer and the residual stress in films, by a chemical solution deposition (CSD).

  • PDF

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

Electrical/Optical Characterization of PZT Thin Films Deposited through Sol-Gel Processing

  • Hwang, Hee-Soo;Kwon, Kyoeng-Woo;Choi, Jeong-Wan;Do, Woo-Ri;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.361-361
    • /
    • 2012
  • PZT (Pb(Zr,Ti)O3) thin films have been used widely in the MEMS application, due to their inherent ferroelectric and piezoelectric properties. Such ferroelectricity induces much higher dielectric constants compared to those of the nonperovskite materials. In this work, the PZT thin films were deposited onto Indium-Tin-oxide (ITO) substrates through the spin-coating of PZT sols. The deposited PZT thin films were characterized in terms of the electrical and optical properties with special emphases on conductivity and optical constants. The detailed analysis techniques incorporate the dc-based current-voltage characteristics for the electrical properties, spectroscopic ellipsometry for optical characterization, atomic force microscopy for surface morphology, X-ray Photoelectron Spectroscopy for chemical bonding, Energy-dispersive X-ray Spectrometry for chemical analyses and X-ray diffraction for crystallinity. The ferroelectric phenomena were confirmed using capacitance-voltage measurements. The integrated physical/chemical features are attempted towards energy-oriented applications applicable to next-generation high-efficiency power generation systems.

  • PDF