• Title/Summary/Keyword: Optical Lens

Search Result 1,449, Processing Time 0.026 seconds

Application of Automatic Design Program for Aspheric Lens Design (비구면 설계를 위한 자동설계프로그램 활용)

  • Park, Jea-Duck;Kim, Soo-Yong;Han, Min-Sik;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • This study is for aspheric lens that is one of a core technology in the optical industry. The feature of a aspheric lens is not to have the spheric aberration. So in optical industry, aspheric lens are essential element to miniaturization, high effectiveness and light weight. In this study we applied a lay back-tracer method using the index of refraction to design aspheric lens. We developed the automatic design program for aspheric lens by user interfacing program VisualLISP in AutoCAD. And we manufactured aspheric lens and measured it.

  • PDF

A Study on Processing and Performance of a 600dpi Master F-theta Lens (600dpi 마스터 에프세타 렌즈 가공 및 성능에 관한 연구)

  • Park, Yong-Woo;Moon, Seong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • This study examines the processing and performance of an f-theta lens, one of the main components used in laser printer and laser scanning systems. To design an f-theta lens, the optical path of the components of the laser scanning unit f-theta lens, cylinder lens, and collimator lens must be identified. The goal after machining the master f-theta lens is to understand the optical properties, root mean square, and peak to valley.

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

Optimization of optical design for Eye Glass Display

  • Moon, H.C.;Kim, T.H.;Park, K.B.;Park, Y.S.;Seok, J.M.;Kim, H.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1603-1606
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6" Liquid Crystal on Silicon (LCoS) panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to LCOS type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than ${\pm}2%$ of distortion value and modulation transfer function in axial had 20% of resolution with 30 lp/mm spatial frequency. The optical system is suitable for display of 0.6"-diagonal with SVGA.

  • PDF

Limitations of time resolution and spatial overlap caused by group velocity mismatch in experiments using ultrashort UV and visible optical pulses. (자외선과 가시광선 극초단 펄스 실험의 군속도 차이에 의한 시간 분해능 및 공간 겹침의 제한)

  • 김성규
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.252-259
    • /
    • 1994
  • The method of calculating overlap dispersion caused by group velocity mismatch between uv and visible pulses in ultrafast pump-probe experiments is presented to discuss limitations of the time resolution and signal intensity. The calculations show arrangements using a single focusing lens shall result in undesirable time resolution and low signal intensity. Achromatic doublets result in unrealistic solutions. However, dramatic improvement in the time resolution and signal intensity is expected in the optical arrangements using separate lens for each pulse and in the arrangements using a cutoff secondary lens with a main lens. lens.

  • PDF

A Optical System Design of LED Marine Lanterns Based on a TIR Collimator Lens (전반사 렌즈를 이용한 LED 등명기 광학계 설계)

  • Go, Dong Hyun;Lee, Yoon Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper, we propose the optical system design for a medium sized LED marine lanterns which simplifies the multi-layer structure into a single structure. In order to satisfy the target fixed intensity(35,000cd) and vertical divergence($-2.5^{\circ}{\sim}-4.0^{\circ}$, $+2.5^{\circ}{\sim}+4.0^{\circ}$), we use the total internal reflection collimator lens. And a Monte Carlo simulation has been utilized to optimize a condition of a LED package, TIR lens and outside lens. The computer simulation results indicated that this LED marine lanterns can produce of a fixed intensity(35,382cd) and vertical divergence($-3.1^{\circ}{\sim}+2.5^{\circ}$). Using the this optical system, we achieve the target value of LED lanterns.

Research to Minimize Endoscope and Objective-lens Sensitivity Using Multi-configurations (다중 구성을 이용한 내시경 및 대물렌즈 광학계 공차 민감도 최소화 설계 기술)

  • Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.259-265
    • /
    • 2021
  • Recently, lens manufacturing and assembly technology has greatly improved. However, tight requirements of manufacturing and assembly lead to an increase in cost and manufacturing time, and in some cases the performance of an optical system may deteriorate depending on the operating environment's conditions, such as temperature or vibration. In addition, the use of a compensator is an effective method to reduce sensitivity in an ultra-precision optical system, but in the case of a small lens, such as that in an endoscope, it is difficult to use a compensator due to the size limitation of the lens barrel. Therefore, minimizing lens sensitivity is the most important technology in lens design. For this reason, there have been various attempts to reduce the lens sensitivity, and there is a trend to add functions to reduce the sensitivity in the lens design S/W. In this paper, we introduce a design technology that minimizes lens sensitivity. We first design a lens with quite good performance, then analyze the sensitivity of this lens, make a multi-configuration with high-sensitivity element error, and then reoptimize it. We prove with an example that this design technique is very effective.

A Study for an Analytic Conversion between Equivalent Lenses (등가렌즈의 해석적인 변환방법에 대한 연구)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • An equivalent lens is a lens which has the same total power of refraction and the same paraxial imaging characteristics for the marginal rays as another lens, but has a different axial thickness. In this study, an analytic lens conversion from a thick lens to its equivalent lens is investigated, then it is shown that the equivalent lens is a solution of a quadratic equation. Every thick lens corresponds to one of two real roots of this quadratic equation. Therefore, except in the case of a unique solution, the equation has a conjugate solution, the other of the two roots. The conjugate solution has the same axial thickness, power, and paraxial imaging characteristics, but it has different shape and aberration characteristics. The characteristics of an equivalent lens and its conjugate solution are examined by using a sample lens.

Analysis of Integral Imaging with Multiple Birefringence Lens Arrays Using Jones Matrix

  • Xu, Kai;Hwang, Yong-Seok;Lee, Sang-Shin
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.274-275
    • /
    • 2009
  • An integral imaging system resorting to multiple birefringence lens arrays using Jones Matrix was analyzed and implemented. Each birefringence lens array was produced by placing a liquid crystal layer on a conventional lens array. Its depth of field was proved to be extended theoretically.

  • PDF

Performance Analysis and Modifications of Axi-Symmetric Electrostatic Lens for Sub-Micron Ion Beam System (Sub-micron의 이온빔 직경을 가지는 축대칭 정전렌즈의 성능 해석 및 개선)

  • 이종현;배남진;김보우
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1348-1358
    • /
    • 1989
  • We analyzed electrostatic lens with axi-symmetic configurations using the analytic equation for a single apertured lens. The developed computer code afforded to estimate ion optical properties such as ion trajectories, aberrations and ion beam diameters, and was found to have advantages of a shorter calculation time. The calculated ion optical properties for several types of electrostatic lens were in good agreement with Burghard's ones and it was seem that 20% reduction of ion beam diameter could be obtained by the change of aperture diameters.

  • PDF