• Title/Summary/Keyword: Optical Image

Search Result 2,684, Processing Time 0.039 seconds

Implementation of optical memory system using angular multiplexing method (각도 다중화 방법을 이용한 광 메모리 시스템의 구현)

  • 김철수;김성완;박세준;김종찬;송재원;김수중
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.101-109
    • /
    • 1998
  • In this paper, we implemented holographic optical memory systm which can store and reconstruct many images using new input and angular multiplexing method. In the new input method, phase infomation of input image is inputed in the recording material instead of brightness information. To do so, we represented the images, which captured with CCD camera or displayed on the computer monitor, on the liquid crystal television(LCTV) which removed polarizer/analyzer. Therefore, we can generate uniform input beam intensity regardless of the total brightness of input image, and apply the scheduled recording method. Also we can increase the intensity of input beam so reduce the recording time of input image. And reconstructedimage is acquired by transforming phase information into brightness information of image with analyzer. The incident angle of reference beam is acquired by Fourier transform of the binary phase hologram(BPH) which designed with SA algorithm on the LCTV. The proposed optical memory system is stable because the incident angle of the reference beam is controlled easy and electronically. We demonstreated optical experiment which store and reconstruct various type images in BaTiO$_{3}$ using proposed holographic memory system.

  • PDF

COMS Operation Design to maintain Image Quality of Optical Payloads (탑재체 영상품질 유지를 위한 통신해양기상위성의 운용설계)

  • Park, Bong-Kyu;Yang, Koon-Ho;Choi, Seong-Bong
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.87-95
    • /
    • 2007
  • The ocean and meteorological payloads of COMS are concerned to experience degration of image quality due to the disturbance induced by the motion of moving parts of the payloads. And thruster firings for stationkeeping and wheel offloading are expected to degrade the image quality of the optical payloads. In case of COMS, in order to keep the optical payload free from the mechanical interference from the other payload, the operation design approach has been taken. This paper introduces the operation design of COMS taken to avoid these problems. In order to meet users requirement by avoiding the degradation of image quality, the timeline of optical payloads and housekeeping are optimized, and operational constraints are applied to the mirror motion of the meteorological payload. This paper also introduces the results of time budget analysis performed to validate the operation design.

  • PDF

Iterative Fourier Transform Algorithm Based on the Segmentation of Target Image for a High-Speed Binary Spatial Light Modulator

  • Im, Yeonsu;Kim, Hwi;Hahn, Joonku
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.149-153
    • /
    • 2015
  • A digital micro-mirror device (DMD) has the potential to modulate an incident wave with high speed, and the application for holographic display has been studied by many researchers. However, the quality of reconstructed image isn't good in comparison with that from a gray-scale amplitude-only hologram since it is a binary amplitude-only spatial light modulator (SLM). In this paper, we suggest a method generating a set of binary holograms to improve the quality of the reconstructed image. Here, we are concerned with the case for which the object plane is positioned at the Fourier domain of the plane of the SLM. In this case, any point in the Fourier plane is related to all points in the hologram. So there is a chance to generate a set of binary holograms illuminated by incident wave with constant optical power. Moreover, we find an interesting fact that the quality of reconstructed image is improved when the spatial frequency bandwidth of the binary hologram is limited. Therefore, we propose an iterative segmentation algorithm generating a set of binary holograms that are designed to be illuminated by the wave with constant optical power. The feasibility of our method is experimentally confirmed with a DMD.

Influence of Image Sticking on Electra-Optical Characteristics in Alternating-Current Plasma Display Panels

  • Choi, J.H.;Jung, Y.;Jung, K.B.;Kim, S.B.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.760-763
    • /
    • 2003
  • We have investigated the electro-optical characteristics of image sticking in AC PDP. Although Image sticking is one of major factors to determine display quality in AC PDP, so far, it has not being reported why it is occurred and how we can prevent it. In this experiment, we have analyzed the effect of MgO protective layer and phosphor on the image sticking and we have measured the difference of firing voltage, brightness and discharge current between sticking image and normal image in AC PDP. As a result, Phosphor degradation is a more major factor than MgO protective layer and the firing voltage of gas discharge in sticking image is higher than that of normal discharge.

  • PDF

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.

Optical Encryption using a Random Phase Image and Shift Position in Joint Transform Correlation Plane (결합 변환 상관 평면의 이동 변위와 무작위 위상 영상을 이용한 광 암호화 시스템)

  • Shin, Chang-Mok;Lee, Woo-Hyuk;Cho, Kyu-Bo;Kim, Soo-Joong;Seo, Dong-Hoan;Lee, Sung-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Most optical security systems use a 4-f correlator, Mach-Zehnder interferometer, or a joint transform correlator(JTC). Of them, the JTC does not require an accurate optical alignment and has a good potential for real-time processing. In this paper, we propose an image encryption system using a position shift property of the JTC in the Fourier domain and a random phase image. Our encryption system uses two keys: one key is a random phase mask and the other key is a position shift factor. By using two keys, the proposed method can increase the security level of the encryption system. An encrypted image is produced by the Fourier transform for the multiplication image, which resulted from adding position shift functions to an original image, with a random phase mask. The random phase mask and position shift value are used as keys in decryption, simultaneously. For the decryption, both the encrypted image and the key image should be correctly located on the JTC. If the incorrect position shift value or the incorrect key image is used in decryption, the original information can not be obtained. To demonstrate the efficiency of the proposed system, computer simulation is performed. By analyzing the simulation results in the case of blocking of the encrypted image and affecting of the phase noise, we confirmed that the proposed method has a good tolerance to data loss. These results show that our system is very useful for the optical certification system.

Optical flow of heart images by image-flow conservation equation and functional expansion (영상유체보존식과 함수전개법에 의한 심장영상의 광류)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1341-1347
    • /
    • 2007
  • The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential images is proposed. The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images. For comparative evaluation, we applied Horn and Schunck's method, a standard multigrid method, and our proposed algorithm to sequential image.