• Title/Summary/Keyword: Optical Flow Sensor

Search Result 84, Processing Time 0.029 seconds

An embedded vision system based on an analog VLSI Optical Flow vision sensor

  • Becanovic, Vlatako;Matsuo, Takayuki;Stocker, Alan A.
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.285-288
    • /
    • 2005
  • We propose a novel programmable miniature vision module based on a custom designed analog VLSI (aVLSI) chip. The vision module consists of the optical flow vision sensor embedded with commercial off-the-shelves digital hardware; in our case is the Intel XScale PXA270 processor enforced with a programmable gate array device. The aVLSI sensor provides gray-scale imager data as well as smooth optical flow estimates, thus each pixel gives a triplet of information that can be continuously read out as three independent images. The particular computational architecture of the custom designed sensor, which is fully parallel and also analog, allows for efficient real-time estimations of the smooth optical flow. The Intel XScale PXA270 controls the sensor read-out and furthermore allows, together with the programmable gate array, for additional higher level processing of the intensity image and optical flow data. It also provides the necessary standard interface such that the module can be easily programmed and integrated into different vision systems, or even form a complete stand-alone vision system itself. The low power consumption, small size and flexible interface of the proposed vision module suggests that it could be particularly well suited as a vision system in an autonomous robotics platform and especially well suited for educational projects in the robotic sciences.

  • PDF

PLC Optical Sensor for Contamination Monitoring on the Flow-Cell in the Water Quality Measurement System (수질 측정용 플로우 셀의 오염 모니터링을 위한 평면광도파로 센서)

  • Han, Seung Heon;Kim, Tae Un;Jung, Haeng Yun;Ki, Hyun Chul;Kim, Doo Gun;Kim, Seon Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.472-476
    • /
    • 2019
  • We have proposed a novel planar lightwave circuit (PLC) optical sensor to monitor the contamination in a flow-cell where water is continuously supplied through a water quality measurement system. We designed a PLC chip with a V-shape waveguide and the simulated its function as a sensor for monitoring contamination in a flow-cell using a numerical the FDTD (finite-difference time-domain) analysis. A novel cross type of waveguide was introduced to make the PLC chip of the V-shaped waveguide. The fabricated PLC was cut into the cross waveguide. A change in the optical propagation loss of the PLC sensor was observed after immersing the PLC sensor into city water. It was determined that the propagation loss of the PLC sensor was 3 dB at a wavelength of $1.55{\mu}m$ in the city water for 15 days.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

Drone Indoor position recognition and hovering technology based on optical flow for Finger printing (BLE Finger printing 연계를 위한 optical flow기반 Drone 실내 위치인식 및 호버링)

  • Lee, Joon beom;Lee, Dohee;Seo, Hyo-seung;Jo, Ju-yeon;Son, Bong-ki;Lee, Jae ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.86-87
    • /
    • 2016
  • 본 논문에서는 optical flow sensor를 이용하여 실내의 바닥 영상인식를 통한 영상처리기법을 이용해 움직임 없는 hovering을 할 수 있는 방법을 제안한다. 또한 optical flow와 BLE finger printing 기법을 혼합해 위치 인식 정밀도를 높일 수 있다. 본 고에서는 optical flow sensor와 BLE finger printing의 두 기술을 혼합하면 드론 스스로 실내에서 정밀도 높은 위치인식이 가능 하며 실외에서만 사용할 수 있는 GPS 비행모드를 대신 할 수 있어 실내에서 자동 경로 비행이 가능하게 하고 위치 안내, 실내 방송촬영, 이동식 CCTV등 질 높은 서비스를 제공하고자 한다.

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

An Experimental Study for the Minimization of Soot Adsorption on the Optical Surface of an Engine Soot Detector (I) (엔진 수트 측정 센서 표면에서의 흡착 오염 저감을 위한 실험적 연구 (I))

  • Yoon Eui-Sung;Kim Hak-Yal;Kong Hosung;Han Hung-Gu
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.343-349
    • /
    • 2004
  • The adsorption of soot particles onto a sensor surface of the engine soot detector posses a critical problem in the measurement. In order to prevent the optical rod surface from soot contamination, various functional coatings and flow-induced cleaning were applied to the surface in this work. For surface coatings, various materials of self-assembled monolayers (SAM) such as OTS (octadecyltrichlorosilane), PFDTES (perfluorodecyl-triethoxysilane) and PFDTMS (perfluorodecyltrimethoxysilane) were coated on the optical rod surface ,which have different characteristics in both hydrophobicity and oleophobicity. These coatings were tested with soot content varying from $0\%\;to\;3wt\%$ and oil temperature from 20 to $70^{\circ}C$. Test results showed that surface coatings were not effective for preventing the adsorption of soot panicles on the surface of optical rod. It was thought that these coatings provided the surface with additional attractive surface forces. However, it was found that adsorption of soot particles onto a sensor surface was minimized by flow-induced cleaning. This effect was tested with varying the flow velocity.