• Title/Summary/Keyword: Optical Disk

Search Result 563, Processing Time 0.023 seconds

Adaptive Repetitive Control for an Eccentricity Compensation of Optical Disk Drive (광 디스크 드라이브의 편심 보상을 위한 적응 반복 제어)

  • Seo, Sam-Jun;Kim, Dong-Won;Park Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.135-142
    • /
    • 2005
  • This paper presents an adaptive repetitive control scheme for optical disk drives to track a variable periodic reference signal. Periodic disturbances can be adequately attenuated using the concept of repetitive control, provided the period is known. Because optical disk drives support various speeds, they have the varying periodic disturbances. Based on repetitive control to change sampling frequency to follow the change of reference period, an adaptive repetitive control is proposed in order to deal with such disturbances. The proposed control consists of the repetitive controller and the frequency generator. The former uses a varying sampler operating at fixed multiple times of the disturbance frequency and the latter generates the changeable sampling frequency based on the disturbance frequency. The experimental results on the control of an optical disk drive demonstrate the effectiveness of the proposed schemes and the improvement of random access time as well.

An Improved Tracking Servo System in Optical Disk Drives (광디스크 드라이브의 개선된 트래킹 서보 시스템)

  • Lee, Tae-Gyu;Jeong, Dong-Seul;Chung, Chung-Choo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.67-73
    • /
    • 2007
  • An optical pick up generally has coupled dynamics between focusing and tracking servos. The coupled dynamics reduces tracking performance of optical disk drives. A conventional control method is holding the previous tracking control command in the presence of surface defect. The method has a long settling time. If the defective area is getting larger, objective lens will get away from the following track. In order to overcome this problem, this paper proposed a new control method for optical disk drives based on a prediction of tracking error and focusing error. We present how to compensate the coupled dynamics so that reduced setting time is achieved. It is verified by experiments that the proposed method brings an improved performance in the presence of surface defect as well as in the normal operating condition.

Study on a Optical Storage Device Based on Multi-beam (다중빔을 이용한 광 저장 장치에 관한 연구)

  • Lee, Jeong-Hyeon;Han, Chang-Su;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.64-70
    • /
    • 1999
  • A new multi-beam optical system is presented on the grounds of tri-positioning systems in this paper. The system has been developed to improve the data transfer rate for the optical disk system. The actuating system is composed of a tracking and focusing actuating system basically and a newly developed beam rotating actuator. The beam rotating actuator is employed in a multi-beam optical system to trace more than one track simultaneously. The multi-beam optics is established through the optical simulation and several experimental trials. The differential phase tracking method is used in the tracking error signal detection based on the only one beam spot. We also analyze the characteristics of multi-beam optical system. The experimental result shows that the multi-beam positioning system has performance adequate to the multi-beam optical disk system.

  • PDF

DYNAMIC CHARACTERISTICS OF SPINNING DISK VIBRATION INFLUENCED BY CENTRIFUGAL AIRFLOW (광자기 기록 장치에서의 디스크 진동과 회전 공기 유동 특성에 관한 연구)

  • 김수경;송인상;손희기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.206-210
    • /
    • 1998
  • A study on dynamic characteristics of rotating disks in magneto optical disk drives is presented. Natural frequencies of rotating disks are investigated experimentally and numerically. The frequency response and critical speeds of the ASMO disk are discussed. The characteristics of airflow around the disk and their effects on disk vibrations are also investigated. It is found that the numerical calculation of the natural frequencies of rotating disks agrees well with the experimental results. The airflow around the disk in the cartridge affects the characteristics of the disk vibrations to reduce the modal frequencies of the disk. The experiment shows that negative vertical offsets of the disk in the cartridge possibly increase the vibration amplitudes. As being influenced by the geometry of the cartridge, the rotation of the disk causes an asymmetric airflow in the presence of window.

  • PDF

Optimum Design of Optical Flying Head Using EMDIOS (EMDIOS를 이용한 Optical Flying Head의 형상 최적설계)

  • Choi Dong-Hoon;Yoon Sang-Joon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • This study proposes a design methodology to determine the optimum configurations of the optical flying head (OFH) for near-field recording systems. Since the OFH requires stricter static and dynamic characteristics of slider air-bearings within an optical tilt tolerance over the entire recording band, an optimum design to keep the focusing and tracking ability stable is essential. The desired flying characteristics considered in this study are to minimize the variation in flying height between the SIL and the disk from a target value, satisfying the restriction of the minimum flying height, to keep the pitch and roll angles within an optical tilt tolerance, and to ensure a higher air-bearing stiffness. Simulation results demonstrate the effectiveness of the proposed design methodology by showing that the static and dynamic flying characteristics of the optimally designed OFH are enhanced in comparison with those of the initial. The gap between the SIL and the disk can be kept at less than 100 nm even if the optical tilt tolerance of the SIL is considered.

  • PDF

Surface Damage Mechanism of Hard Disk (하드디스크의 표면 파손 기구에 관한 고찰)

  • 정구현;김대은;김상국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.716-720
    • /
    • 1996
  • In this work the surface damage mechanism of hard disk was investigated. Experiments were peformed to simulate the contact during start and stop. Evidence of significant surface damage appeared after 20,000 cycles. It was found that despite higher hardness, the slider showed more signs of damage than the disk. Optical microscopy showed that the surface was damaged by abrasive action as well as adhesion of wear debris.

  • PDF

An Optical Disk Drive Servo System Using a Modified Disturbance Observer (수정된 외란관측기를 이용한 광 디스크 드라이브 서보 시스템)

  • Jeong Jong-Il;Kim Moo-Sub;Oh Kyung-Whan;Chung Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.484-491
    • /
    • 2005
  • Using a disturbance observer is effective in enhancing the performance of dynamic system in presence of disturbances. Although various types of disturbance observers have been proposed to improve sensitivity of systems, there exist poor transient responses due to cross-couplings among disturbance observer loops. In this paper, dual disturbance observer (DOB) is proposed to reduce the effects of the cross-couplings. A different type of loop transfer function is proposed for external disturbance observer. While improving the sensitivity function by adding external DOB, it also provides improved complementary sensitivity function. The proposed dual DOB is applied to a commercial optical disk drive tracking system. It is shown that the dual DOB is an effective method in rejecting the effect of disturbance as well as improving the tracking performance.

Anti-shock Controller Design for Optical Disk Drive Systems with Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 제어기를 이용한 Anti-Shock 제어기 설계)

  • Baek, Jong-Shik;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.675-677
    • /
    • 2004
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, dead-zone nonlinear element is used for nonlinear controller and PID control method is used for linear controller. Although this strategy improves anti-shock performance, it has a narrow stability bound. In this paper, we propose dead-zone with saturation nonlinear element for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher gain of dead-zone than the controller with dead-zone only. In the linear controller design, we show that lead-lag control has improved stability margin over PID control. Numerical simulation results show that the proposed method can get better performance to the external shock than previously proposed method.

  • PDF

Performance Enhancement of Optical Disk Drive Servo System using Dual modified Disturbance Observer (광디스크 드라이브 서보 시스템을 위한 수정된 외란관측기)

  • Kim, Moo-Sub;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.738-740
    • /
    • 2004
  • The disturbance observer is effective in enhancing the performance of position control in high speed optical disk drive systems(ODDS). It is known that error based modified disturbance observer (EM-DOB) is more effective structure than general DOB. It has a simple structure and realization, but it loses robustness. We propose a dual modified disturbance observer(Dual mDOB). It consists of internal loop EM-DOB and external loop DOB. Those loops are designed for different objects. We see that the dual mDOB is an effective method for tracking performance.

  • PDF

A Study on the Characteristic of Driving Sound Noise for Various Optical Disk Drives (광디스크 드라이브의 종류별 구동소음 특성에 관한 연구)

  • Oh, Se-Won;Kim, Yu-Sung;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.580-586
    • /
    • 2005
  • In this study, experimental tests for driving noise of various optical disk drives (ODD) have been performed using 1/2' microphone noise measurement system. Several new and old ODD models by different manufacturers are practically considered and compared far realistic driving conditions. Sound insulation case with absorbing material fur the present experimental tests is designed and constructed using CATIA system. It is found that average data transfer rate, operating RPM, and sound noise level seems to be different for the same opposed speed ODD by different manufacturers. Moreover, driving sound noise level can be largely affected by both tray shape and driving speed even for the same apparent data transfer rate.

  • PDF