• Title/Summary/Keyword: Optical Couplers

Search Result 101, Processing Time 0.037 seconds

Design of optical power splitters and couplers composed of deeply etched multimode interference section (깊이 식각된 다중모드 간섭 영역으로 구성된 광전력 분배기 및 결합기의 설계)

  • 김정욱;정영철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.62-72
    • /
    • 1997
  • The optical power splitter/couplers based on MMI(multimode interference) in GaAs/AlGaAs are studied. We presetn a design of optical power splitter/couplers, which have deeply etched multimode waveguide. The properties and fabrication tolerance on the etching depth, multimode waveguide width are simulatedusing a FD-BPM (finite difference beam propgation method). Proposed 1*N optical of designed device is 0.7dB smaller than the optical power splitter with a shallowly etched MMI section. For 0.5dB excess loss, the predicted fabrication tolerance is 0.6.mu.m on the multimode waveguide width of the 14 optical power splitter with a deeply etched MMI section. Also excess loss and uniformity of poposed 32*32 optical power coupler are below 0.3dB. The excess loss of proposed 32*32 optical power coupler is 2dB smaller than the optical power coupler with a shallowly etched MMI section. It is shown that the optical power splitters/couplers with a deeply etched mMI section have low loss, good uniformity, and improved fabriction tolerance.

  • PDF

Measurement and Analysis of Loss in Optical Directional Couplers

  • Leepila, R.;Jangsilp, R.;Noppanakeepong, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.484-487
    • /
    • 2004
  • Symmetric directional couplers are widely used in interferometers, switches, and various signal processing devices. Recently, several optical couplers using multimode fibers were reported, but these suffer from inefficient coupling of light into a branching fiber and/or low directivity. This paper presents the measurement and analysis of loss in the connection of optical fibers via the optical directional couplers. The functionality of the device is based on the principle that is symmetrical, the power in excited mode can be unambiguously directed into one of the output channel by varying and of its parameters. In this experiment, we measure the power of loss in the optical directional coupler at various radius of curvature. Before the measurement of loss in x-coupler, we polish the contact of the fiber surface in order that light can penetrate through another port. The results show that, when the radius of curvature is increased, the loss power is decreased and also approaches of the straight line case.

  • PDF

Optical Path Analysis and Experiments for Optical Microphone (광 마이크로폰 개발을 위한 광 경로해석 및 실험)

  • Kwon, Hyu-Sang;Kim, Kyong-Woo;Kim, Jin-Ki;Che, Woo-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.210-217
    • /
    • 2007
  • The theoretical formulations are derived for calculating optical power change for intensity modulated fiber optical microphone. The optical power change is due to optical paths, misalignment and geometry of optical coupler. Based on the theoretical equations, three different optical couplers are simulated with respect to several angles of optical couplers. In order to evaluate the formulation, a multi-mode to multi-mode coupler which is one of abovementioned optical couplers is designed and characterized by carving out both static experiments and dynamic experiments. Considering experimental results, this paper conclude that the theoretical formulations is very useful for design optical coupler and this kind of fiber optic sensor is adequate to microphone.

Novel Unified Criterion to Optimize Power Coupling at Optical Directional Couplers with Discontinuity Interface (불연속 경계면을 갖는 광 방향성 결합기의 최적 결합효율을 위한 새로운 통합기준)

  • Ho, Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • Novel unified criterion to optimize power coupling at optical directional couplers with discontinuous input/output interfaces is first defined and evaluated numerically. The numerical results reveal that maximum power transfer between guiding slabs without discontinuous interfaces is dominated by conventional phase-matching condition while the guiding structures with discontinuous interfaces has maximum power transfer at an equi-partition condition, which describes the power distribution condition between two rigorous modes propagating through optical couplers.

  • PDF

Numerical Analysis of Grating-Assisted Waveguide Couplers (Grating-Assisted 도파관 커플러의 수치 해석)

  • 김종헌;김남영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.114-117
    • /
    • 1996
  • The wavelength selectivity in grating-assisted optical waveguide couplers is studied using a matrix method to analyse optical filter characteristics. The matrix method is extended to both 2-system modes and all guided system modes. The influence of fundamental design parameters on the performances of the optical filters by waveguide couplers is discussed.

  • PDF

Design of optical directional couplers using Nano-Scale MQWs (나노 양자우물구조를 이용한 광통신용 방향성 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • An optical directional coupler, which consists of quantum wells with nanothickness, is designed by using Modal Transmission Line Theory (MTLT). To demonstrate the validity and usefulness, the propagation characteristics and the coupling efficiencies are rigorously evaluated at nanoscale couplers, which consist of double quantum wells with different effective masses. The numerical result reveals that the coupling efficiency of nanoscale couplers is maximized at a coupling length 2052.3 nm, if the total electron energy is 83.9 meV. Furthermore, the coupler operates as a filter with narrower band as the barrier thickness increases.

Fabrication and Characteristics of Plastic Optical Fiber Directional Couplers

  • Kim Dae-Geun;Woo Sae Yoon;Kim Dong-Kwan;Park Seung-Han;Hwang Jin-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.99-102
    • /
    • 2005
  • Directional couplers of gradient-index plastic optical fibers were fabricated and characterized. In particular, we have employed a core-facet technique to make the directional couplers, which require mechanical side polishing and linkage. We have measured insertion loss, excess loss, and coupling ratio of the fabricated couplers as a function of polishing depth and coupling length. We found that polishing depth of $\~300{\mu}m$ and coupling length of $\~35mm$ are optimum conditions for minimizing the insertion and excess losses and for achieving 1: 1 coupling ratio.

Design of Optical Filters using Grating-Assisted Fiber Couplers (GAFCs)

  • Ho Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.276-280
    • /
    • 2004
  • This paper first takes advantage of a rigorous modal transmission-line theory (MTLT) to analyze the filtering properties of optical waves guiding by grating-assisted fiber couplers (GAFCs). The numerical results reveal that MTLT serves as a suitable and powerful approach to evaluate systematically the dispersion properties and the characteristics of optical power transfer in GAFCs.

  • PDF

Specialty Fiber Coupler: Fabrications and Applications

  • Lee, Byeong-Ha;Eom, Joo-Beom;Park, Kwan-Seob;Park, Seong-Jun;Ju, Myeong-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.

Fabrication and Characterization of N×N Plastic Optical Fiber Star Coupler based on Fused Combining

  • Kim, Kwang Taek;Lee, Byeong Ha;Lee, Cherl-Hee;Lee, Jonghun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • High performance plastic optical fiber (POF) $N{\times}N$ star couplers are implemented based on fusing and combining technology. A set of cladding-removed POFs are fused into a solid body by heating and pressing them together to form the transition region between the input and output sides. The operation principle of the proposed star coupler is explained based on ray optics. To demonstrate the performance of the device, $2{\times}2$, $4{\times}4$ and $6{\times}6$ type POF couplers were fabricated and characterized. Performances of the POF star couplers were evaluated in terms of the flatness of the coupling ratios and excess losses.