• Title/Summary/Keyword: Optical Coherent

Search Result 219, Processing Time 0.027 seconds

An Optimal Design Method for Optical Fiber Filter of Lattice Structure (격자형 광파이버필터의 최적설계에 관한 연구)

  • 이채욱;문병현;우홍채
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.34-42
    • /
    • 1993
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of lattice structure, which uses coherent light sources and consists of directional couplers and optical fiber delay elements.The differences between the optical fiber filter and the ordinary digital filter are 1) the coupling coefficients of directional couplers are restricted between 0 and 1. 2) the optical signal is divided into ${j\sqrt{a}}and\;{j\sqrt{1-a}}$ at the directional coupler. Considering these restrictions, the design formulae and condition of realibility for optical fiber filter of lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

Method of Crosstalk Analysis for CO-ORMDM Systems

  • Kyung Hee Seo;Jae Seung Lee
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.156-161
    • /
    • 2024
  • Recently, a new kind of optical multiplexing called optical-receiver-mode (ORM)-division multiplexing (ORMDM) has been proposed, in which an optical channel is a linear sum of ORM subchannels modulated independently. Using coherent-optical (CO) techniques, it has been reported that COORMDM communication systems can have very high spectral efficiencies (SEs). To estimate the SEs of CO-ORMDM communication systems, we introduce a new method of crosstalk analysis. Using this method, we can allocate quadrature-amplitude-modulation (QAM) codes and QAM step sizes unevenly over ORM subchannels to obtain higher SEs. With 50 Gaussian ORMs, we obtain a SE of up to 15.29 bit s-1 Hz-1.

Coherent Absorption Spectroscopy with Supercontinuum for Semiconductor Quantum Well Structure

  • Byeon, Ciare C.;Oh, Myoung-Kyu;Kang, Hoon-Soo;Ko, Do-Kyeong;Lee, Jong-Min;Kim, Jong-Su;Choi, Hyoung-Gyu;Jeong, Mun-Seok;Kee, Chul-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.138-141
    • /
    • 2007
  • We suggest that supercontinuum can be used for absorption spectroscopy to observe the exciton levels of a semiconductor nano-structure. Exciton absorption spectrum of a GaAs/AlGaAs quantum well was observed using supercontinuum generated by a microstructrured fiber pumped by a femtosecond (fs) pulsed laser. Significantly narrower peaks were observed in the absorption spectrum from 11 K up to room temperature than photoluminescence (PL) spectrum peaks. Because supercontinuum is coherent light and can readily provide high enough intensity, this method can provide a coherent ultra-broad band light source to identify exciton levels in semiconductors, and be applicable to coherent nonlinear spectroscopy such as electromagnetically induced transparency (EIT), lasing without inversion (LWI) and coherent photon control in semiconductor quantum structures.

Vector and Scalar Modes in Coherent Mode Representation of Electromagnetic Beams

  • Kim, Ki-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • It is shown that the two mode representations, one with vector modes and the other with scalar modes, for the cross spectral density matrices of electromagnetic beams are equivalent to each other. In particular, we suggest a method to find the vector modes from the scalar modes and formulate the cross spectral density matrix as a correlation matrix.