• Title/Summary/Keyword: Optical Analysis

Search Result 4,647, Processing Time 0.034 seconds

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption (일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측)

  • Lee, Seul-Ki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.777-786
    • /
    • 2014
  • Mt. Ontake is the second highest volcano in Japan. On 02:52 Universal Time Coordinated(UTC), 27th September 2014, Ontake volcano began on the large eruption without notice. Due to the recent eruption, 55 people were killed and around 70 people injured. Therefore, This paper performed numerical experiment to analyse damage effect of volcanic ash corresponding to Ontake volcano erupt. The forecast is based on the outputs of the HYSPLIT Model for volcanic ash. This model, which is based on the UM numerical weather prediction data. Also, a quantitative analysis of the ash dispersion area, it has been detected using satellite images from optical Communication, Ocean and Meterological Satellite-Geostationary Ocean Color Imager (COMS-GOCI) images. Then, the GOCI detected area and simulated ash dispersion area were compared and verified. As the result, the similarity showed the satisfactory result between the detected and simulated area. The concordance ratio between the numerical simulation results and the GOCI images was 38.72 % and 13.57 %, Also, the concordance ratio between the JMA results and the GOCI images was 9.05 % and 11.81 %. When the volcano eruptions, volcanic ash range of damages are wide more than other volcanic materials. Therefore, predicting ash dispersion studies are one of main way to reduce damages.

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

Comparison of Anatomical Characteristics for Wood Damaged by Oak Wilt and Sound Wood from Quercus mongolica (참나무시들음병 신갈나무 피해목과 건전목의 해부학적 특징 비교)

  • JEON, Woo-Seok;LEE, Hyun-Mi;PARK, Ji-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.807-819
    • /
    • 2020
  • The aim of this study was to investigate the anatomical characteristics of Quercus mongolica infested by oak wilt disease. To analysis the anatomical characteristics of the wood specimens infested by the oak wilt, the anatomical structures of an infected wood, a dead wood, and sound wood were observed at 10-year-old intervals from 10 to 50 annual rings using both an optical and a scanning electron microscope. The fiber length was measured in units of 5 annual rings from the pith, and the diameter of the vessel element and the ratio of the vessel including the tyloses were measured for each 10 annual ring. In the cross section, on the infected and dead wood specimens, mycelium was also observed with the tyloses in the vessel. There was no signification difference between the wood specimens in the fiber length and the vessel diameter of the vessel element. The fiber length was not difference after 20-30 annual rings which is a part of juvenile wood. The average of the vessel ratio including tyloses in the infected wood was the highest. Especially, the ratio of tyloses was the highest 40-50 annual rings in the infected wood and the dead wood. Therefore, the large difference between the infested wood by oak wilt and the sound wood was the ratio of tyloses. This result can be used as a basic data to utilize the infested wood.

Analysis of the Behavior of Fluorescent Whitening Agents in Recycling Process of White Ledger (형광증백제가 함유된 백상고지의 재활용에 따른 형광증백제의 거동 분석)

  • Lee, Ji Young;Kim, Chul Hwan;Park, Jong-Hye;Kim, Eun-Hea;Sung, Yong Joo;Heo, Young-Jun;Kim, Young-Hoon;Kim, Yeon-Oh
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • White ledger usually includes white office paper, computer paper, and copy machine paper. Because these grades need high optical properties, fluorescent whitening agents (FWAs) are widely used in the papermaking process. FWAs are the most powerful and effective chemical used to obtain high CIE whiteness and ISO brightness in papers. The rising demand for white or ultra-white papers has increased the use of FWAs. However, FWAs used in white ledger can restrict its use, even though white ledger is widely used as a raw material in paperboard mills. Therefore, it is necessary to develop methods to control FWAs from white ledger to increase its use in paperboard mills. In this study, the behaviors of disulpho fluorescent whitening agent (D-FWA), tetrasulpo fluorescent whitening agent (T-FWA), and hexasulpho fluorescent whitening agent (H-FWA) during the recycling process were identified as a first step to remove FWAs from white ledger. We prepared four types of papers (dyed with D-FWA, T-FWA, and H-FWA), disintegrated these papers, and made handsheets. This recycling process was carried out three times in a laboratory. After each round of recycling, the hand-sheets' CIE whiteness and fluorescence index were measured, and the distribution of FWAs in the Z-direction was observed using CLSM images. FWA reductions in the model papers were calculated using fluorescence indices as a function of the number of recycling. FWAs in handsheets containing T-FWA and H-FWA decreased linearly as a function of the number of recycling, but D-FWA did not show a significant reduction in the fluorescence index after recycling. T-FWA and H-FWA showed similar distributions of D-FWA after recycling. Therefore, as much T-FWA and H-FWA as possible must be detached in the early processes of papermaking at paperboard mills.

A Study on the Spatial Characteristics of Golf Courses (골프코스의 공간적 특성에 관한 연구)

  • Kim, Chung-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.15-26
    • /
    • 2008
  • The purpose of this study is to attempt to interpret golf courses as event-generating spaces with consideration given to the time factor. Through a golf game, a variety of events such as the tee shot, second shot, putt, and hole out are generated. These events have been connected to a series of events after hole out such as birdie, par, bogey and so on. The series of events do not always occur in the same way. They reveal unexpected changes over time. These unexpected changes cause changes in the spatial characteristics and offer unforgettable memories for golfers. Gilles Deleuze mentioned the spatial characteristics as striated space and smooth space. Striated space can be defined as sedentary space. It is distant vision-optical space that has dimensional, metric and centered characteristics, whereas smooth space is defined as nomadic, close vision-haptic space that has directional and acentered characteristics. This study focused on the analysis of spatial characteristics according to striated space and smooth space. Golf courses generally show the characteristics of striated space before beginning the game. As soon as the game begins, however, the golf courses are converted into an event-generating space. The characteristics of striated space are transformed into smooth space, a nomadic space that amplifies the dynamic, changeable, de-scaled and non-metric system. Through the whole game, this transformation is dramatically repeated. On the other hand, the golfer, the subject of the game, senses the phenomenological experience in the process of orientation, center, definition, and domestication.

An Analysis of the Symbiotic Star Z And Line Profile (공생별 Z And의 선윤곽 분석)

  • Lee, Seong-Jae;Hyung, Siek;Lee, Kangwhan
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.608-617
    • /
    • 2012
  • The symbiotic nova Z Andromedae (And) was investigated, using the high dispersion spectra of spectral resolution, ${\Delta}{\lambda}{\sim}-0.1{\AA}$. The spectral observations were done with (1) the Hamilton Echelle Spectrograph (HES) and the high resolution spectra (exposures=1800s and 3600s) were obtained at Lick Observatory in 2001 August $30^{th}$ (phase ${\Phi}$=0.77), and 2002 August $12^{th}$ (phase ${\Phi}$=0.22), (2) with the Bohyunsan Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory and the high resolution spectra (exposure=1200s) were secured in 2009 October $21^{st}$ (phase ${\Phi}$=0.70). From both the HES and BOES spectral data in the $3600{\AA}-9500{\AA}$ wavelengths, we extracted the emission lines of HI, HeI, and HeII, which have been decomposed into double or triple Gaussian components for 3 consecutive phases. The emission zones responsible for these components appear to be closely related with the orbital motion of a white dwarf or a giant star. The presence of the Raman scattering $H{\alpha}$ broad wing feature and the kinematic characteristics of the line profile observed in each phase imply that the Z And emission lines are mostly from two Lagrangian points, $L_1$ and $L_2$, and the accretion disk around the white dwarf star. The Z And was most active in 2009 and 2001 during the outburst phase, while it remained quiescent in 2002 in spite of the complex line profiles.

Sensibility Evaluation on the Correlated Color Temperature in White LED Lighting (백색 LED 조명의 색온도에 관한 감성평가)

  • Jee, Soon-Duk;Lee, Sang-Hyuk;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2008
  • The aim of this study is to investigate the sensitivity evaluation of human beings in reacting to the correlated color temperature of the optical properties of white LED lighting. For the sake of this study, white light-emitting diode modules have been fabricated their correlated color temperature have been measured, test cabinets for the sensitivity evaluation have been constructed with the white LED modules, and their sensitivity reactions on the test cabinets have been evaluated and analyzed. The sensitivity reaction has been evaluated by the semantic differential method with 15 selected questions, and the reliability and the content validity of their lighting have been analyzed to 3 factors which foe the activity as the first factor, the stability as the second one, the potency as the third one, respectively. For the data analysis on the sensitivity reaction, the dependent variable is the score of the sensitivity evaluation and the independent one is the correlated color temperature of the test module. The results of this study is as follows: In the case of the sensitive evaluation on the activity and the potency in the white LED lighting compared with the fluorescent lamp, the subjects have made higher mark on $MA_3$ with 8,300[K], and in the factor of the stability, they have made higher mark on $MA_1$ with 3,800[K].

Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A (KOMPSAT-3/3A 채널별 6SV 조견표의 지표반사도 민감도 분석)

  • Jung, Daeseong;Jin, Donghyun;Seong, Noh-Hun;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sim, Suyoung;Han, Kyung-Soo;Kim, Bo-Ram
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.785-791
    • /
    • 2020
  • The radiance measured from satellite has noise due to atmospheric effect. Atmospheric correction is the process of calculating surface reflectance by removing atmospheric effect and surface reflectance is calculated by the Radiative Transfer Model (RTM)-based Look-Up Table (LUT). In general, studies using a LUT make LUT for each channel with the same atmospheric and geometric conditions. However, atmospheric effect of atmospheric factors do not react sensitively in the same channel. In this study, the LUT for each channel of Korea Multi-Purpose SATellite (KOMPSAT)-3/3A was made under the same atmospheric·geometric conditions. And, the accuracy of the LUT was verified by using the simulated Top of Atmosphere radiation and surface reflectance in the RTM. As a result, the relative error of the surface reflectance in the blue channel that sensitive to the aerosol optical depth was 81.14% at the maximum, and 42.67% in the NIR (Near Infrared) channel.