• Title/Summary/Keyword: Optical Alignment System

Search Result 185, Processing Time 0.037 seconds

A Study on the Design and Development of Automatic Optical Fiber Aligner (자동 광섬유 정렬 장치의 설계 및 제작에 관한 연구)

  • Kim, Byung-Hee;Uhm, Chul;Choi, Young-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.241-249
    • /
    • 2002
  • Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super precision technology in sub-micron units is required for optical axis adjustment. We developed the automatic optical fiber by image processing and automatic loading system. we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10{\mu}m$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up and fiber input array and waveguide chip formed in line by automatic.

  • PDF

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyoung;Oh, Heeyoung;Yuk, In-Soo;Park, Chan;Chun, Moo-Young;Oh, Jae Sok;Kim, Kang-Min;Lee, Hanshin;Jeong, Ueejeong;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (2) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (2))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.96-104
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The centers of fiducial marks are obtained by using moment, gradient method. The first method is calculating the centroid by using first moment of blob, and the latter method is calculating the center of the circle whose equation is obtained by curve-fitting the boundaries of fiducial mark. The operating system used to implement the whole set-up is carried in Window 98 (or NT) environment. Finally we implemented this system to PCB screen printer.

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Optical Design for Satellite Camera with Online Optical Compensation Movements (온라인 광학보정장치를 적용한 위성카메라의 광학설계)

  • Jo, Jeong-Bin;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • In this study, optical design for small satellite camera equipped with online optical compensation movements has been conducted. Satellite camera equipped with compensation movements at M2 mirror and focal plane can guarantee the MTF performance through the focal plane image stabilization and the on-orbit optical alignment. The designed optical system is schmidt-cassegrain type that has M1 mirror of a diameter 200mm, GSD 3.8m at an altitude of 700km, and 50 % MTF performance. The performance of the designed optical system has been analyzed through the method of ray aberration curve, spot diagram, and MTF. It has been found by the optical performance analysis that the designed optical system satisfies the optical requirements of satellite camera equipped with online optical compensation movements.

Optical coupling coefficients and packaging of optical transmitter module for optical subscriber (광가입자용 수동광정렬형 광송신 모듈에 대한 광결합 효율 및 패키징)

  • 김상곤;송민규
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2000
  • Optical coupling coefficients and misalignment tolerance of 155 Mbps optical transmitter module of passive alignment technology, to be usable in ATM system, B-NT (Broadband Network Termination) system, and 10 G transmission system for information super-highway networks, were calculated, compaired with it's engineer samples, and discussed. These engineer samples of -4.5 dBm maximum output power were packaged in the method of butt coupling of flat-fiber and tested reliability evaluation. Hence the cheap packaging method of optical transmitter module was researched. rched.

  • PDF

Alignment of Schwarzchild-Chang Off-axis Telescope with a Shack-Hartmann Wavefront Sensor and Sensitivity Table Method

  • Lee, Sunwoo;Park, Woojin;Kim, Yunjong;Kim, Sanghyuk;Chang, Seunghyuk;Jeong, Byeongjoon;Kim, Geon Hee;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.79.1-79.1
    • /
    • 2019
  • The Schwarzchild-Chang telescope is a confocal off-axis two mirror telescope with D = 50 mm, F = 100 mm and FOV = 8 ° × 8 °. Unlike common off-axis telescopes, the mirrors of the Schwarzchild-Chang telescope share their focal points to remove the linear astigmatism. In this poster, we show the alignment process of the Schwarzchild-Chang telescope with wavefront measurement and the sensitivity table method. Wavefront is measured using the Shack-Hartmann sensor, and Zernike polynomials are obtained from measured wavefront. Sensitivity table method is to calculate alignment errors from the Zernike coefficients. As a result, we evaluate tilt, decenter, and despace of each mirror of linear astigmatism-free con-focal off-axis system.

  • PDF

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (1) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (1))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand fur high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The geometrical relationship between PCB, cameras, and xy$\theta$ stage is derived, and analytical equations for alignment errors are also obtained. The unknown parameters including camera declining angles and etc. can be obtained by initialization process. Finally, the proposed algorithm is verified by experiments by using test bench.

Electro-Optical Characteristics of the Ion-Beam-Aligned FFS-LCD on a Diamond-like-Carbon Thin Film

  • Hwang, J.Y.;Park, C.J.;Seo, D.S.;Jeong, Y.H.;Kim, K.C.;Ahn, H.J.;Baik, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1132-1136
    • /
    • 2004
  • In this paper, we intend to make FFS mode cell with LC alignment used non-rubbing method, ion beam alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for FFS-LCD and the aligning capabilities of nematic liquid crystal (NLC) using the new alignment material of a-C:H thin film as working gas at rf bias condition. A high pretilt angle of about 5$^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. An excellent voltage-transmittance (V-T) and response time curve of the ion-beam-aligned FFS-LCD was observed with oblique ion beam exposure on the DLC thin films.

  • PDF

Vertical Alignment of Liquid Crystal on Film of Plant-based Polysaccharide Derivatives

  • Yeonsu Cho;Jihyeon Moon;DaEun Yang;Hyo Kang
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, we investigate the liquid crystal (LC) alignment of LC cells created from plant-based polysaccharide derivatives, such as guar gum. Guar gum films exhibit satisfactorily high optical transparency in the visible light region (400-750 nm). For example, the transmittance of polyimide films, which are the most typically used LC alignment layers, is 87%, whereas that of guar gum films deposited onto a glass substrate at a wavelength of 550 nm is approximately 99%. The observed LC alignment depends on the rubbing depth. For example, an LC cell comprising a guar gum film fabricated via rubbing at rubbing depths of 0.1, 0.2, 0.3, and 0.4 mm exhibits a planar LC alignment, whereas it exhibits a vertical LC alignment at a rubbing depth of 0.5 mm. Additionally, the LC alignment is shown to be correlated with the total surface energy of the guar gum films. When the total surface energy of a rubbed guar gum film exceeds 58.10 mJ/m2, an LC cell comprising the guar gum film exhibits a stable and vertical LC alignment. Therefore, guar gum can be used to realize the vertical alignment system of LC via a simple adjustment of the rubbing depth.