DOI QR코드

DOI QR Code

Vertical Alignment of Liquid Crystal on Film of Plant-based Polysaccharide Derivatives

  • Yeonsu Cho (Department of Chemical Engineering, Dong-A University) ;
  • Jihyeon Moon (Department of Chemical Engineering, Dong-A University) ;
  • DaEun Yang (Department of Chemical Engineering, Dong-A University) ;
  • Hyo Kang (Department of Chemical Engineering, Dong-A University)
  • Received : 2022.12.07
  • Accepted : 2022.12.23
  • Published : 2023.03.31

Abstract

In this study, we investigate the liquid crystal (LC) alignment of LC cells created from plant-based polysaccharide derivatives, such as guar gum. Guar gum films exhibit satisfactorily high optical transparency in the visible light region (400-750 nm). For example, the transmittance of polyimide films, which are the most typically used LC alignment layers, is 87%, whereas that of guar gum films deposited onto a glass substrate at a wavelength of 550 nm is approximately 99%. The observed LC alignment depends on the rubbing depth. For example, an LC cell comprising a guar gum film fabricated via rubbing at rubbing depths of 0.1, 0.2, 0.3, and 0.4 mm exhibits a planar LC alignment, whereas it exhibits a vertical LC alignment at a rubbing depth of 0.5 mm. Additionally, the LC alignment is shown to be correlated with the total surface energy of the guar gum films. When the total surface energy of a rubbed guar gum film exceeds 58.10 mJ/m2, an LC cell comprising the guar gum film exhibits a stable and vertical LC alignment. Therefore, guar gum can be used to realize the vertical alignment system of LC via a simple adjustment of the rubbing depth.

Keywords

Acknowledgement

Financial supports by the Dong-A University Research Fund are gratefully acknowledged.

References

  1. S. Chandrasekhar, "Liquid crystals", 2nd ed., Cambridge University Press, New York, USA, 1992.
  2. R. B. Meyer, "Effects of electric and magnetic fields on the structure of cholesteric liquid crystals", Appl. Phys. Lett., 12, 281 (1968).
  3. W. Brostow and H. E. H. Lobland, "Materials: Introduction and applications", John Wiley & Sons, New Jersey, USA, 2016.
  4. R. Baetens, B. P. Jelle, and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-theart review", Sol. Energ. Mat. Sol. C., 94, 87 (2010).
  5. H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. S. Y. Shinagawa, "Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays", Jpn. J. Appl. Phys., 36, 143 (1997).
  6. H. K. Bisoyi and S. Kumar, "Liquid-crystal nanoscience: an emerging avenue of soft self-assembly", Chem. Soc. Rev., 40, 306 (2011).
  7. S. J. Woltman, G. D. Jay, and G. P. Crawford, "Liquid-crystal materials find a new order in biomedical applications", Nat. Mater, 6, 929
  8. T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, and M. Funahashi, "Transport of ions and electrons in nanostructured liquid crystals", Nat. Rev. Mater., 2, 1 (2017).
  9. M. Kumar and S. Kumar, "Liquid crystals in photovoltaics: a new generation of organic photovoltaics", Polym. J., 49, 85 (2017).
  10. J. Stohr, M. G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, "Microscopic origin of liquid crystal alignment on rubbed polymer surfaces", Macromolecules, 31, 1942 (1998).
  11. M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, "The TV in your pocket: development of liquid-crystal materials for the new millennium", Angew. Chem., 52, 8880 (2013).
  12. J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sanchez-Pena, "Recent advances in adaptive liquid crystal lenses", Cryst., 9, 272 (2019).
  13. J. F. Algorri, P. Morawiak, N. Bennis, D. C. Zografopoulos, V. Urruchi, L. Rodriguez-Cobo, L. R. Jaroszewicz, J. M. Sanchez-Pena, and J. M. Lopez-Higuera, "Positive-negative tunable liquid crystal lenses based on a microstructured transmission line", Sci. Rep., 10, 1 (2020).
  14. M. Bosch, M. R. Shcherbakov, K. Won, H. Lee, Y. Kim, and G. Shvets, "Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces", Nano Lett., 21, 3849 (2021).
  15. N. Bennis, T. Jankowski, O. Strzezysz, A. Pakula, D. C. Zografopoulos, P. Perkowski, J. M. Sanchez-Pena, J. M. Lopez-Higuera, and J. F. Algorri, "A high birefringence liquid crystal for lenses with large aperture", Sci. Rep., 12, 1 (2022).
  16. T. Onuma, E. Hosono, M. Takenouchi, J. Sakuda, S. Kajiyama, M. Yoshio, and T. Kato, "Noncovalent approach to liquid-crystalline ion conductors: high-rate performances and room-temperature operation for Li-ion batteries", ACS omega, 3, 159 (2018).
  17. Z. Ahmad, Z. Hong, and V. Viswanathan, "Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries", Proc. Nat. Acad. Sci., 117, 26672 (2020).
  18. J. Beeckman, K. Neyts, and P. J. Vanbrabant, "Liquid-crystal photonic applications", Opt. Eng., 50, 081202 (2011).
  19. Z. Zheng, H. Hu, Z. Zhang, B. Liu, M. Li, D. Qu, H. Tian, W. Zhu, and B. L. Feringa, "Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches", Nat. Photonics, 16, 226 (2022).
  20. Y. Gao, W. Ding, and J. Lu, "Templated Twist Structure Liquid Crystals and Photonic Applications", Polymers, 14, 2455 (2022).
  21. S. K. Gupta, D. Budaszewski, and D. P. Singh, "Ferroelectric liquid crystals: futuristic mesogens for photonic applications", Eur. Phys. J.: Spec. Top., 231, 673 (2022).
  22. N. A. Gujarathi, B. R. Rane, and R. K. Keservani, "Liquid Crystalline System: A Novel Approach in Drug Delivery, in Novel Approaches for Drug Delivery", p. 190, Pennsylvania, USA, 2017.
  23. P. Rajak, L. K. Nath, and B. Bhuyan, "Liquid crystals: an approach in drug delivery", Indian J. Pharm. Sci., 81, 11 (2019).
  24. L. Nalone, C. Marques, S. Costa, E. B. Souto, and P. Severino, "Chapter 7 - Liquid crystalline drug delivery systems, in Drug Delivery Trends", ed. by R. Shegokar, p. 141, Elsevier, Amsterdam, Netherlands, 2020.
  25. V. P. Chavda, S. Dawre, A. Pandya, L. K. Vora, D. H. Modh, V. Shah, D. J. Dave, and V. Patravale, "Lyotropic liquid crystals for parenteral drug delivery", J. Controll. Release, 349, 533 (2022).
  26. M. Chountoulesi, S. Pispas, I. K. Tseti, and C. Demetzos, "Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms", Pharmaceuticals, 15, 429 (2022).
  27. C. Luan, H. Luan, and D. Luo, "Application and technique of liquid crystal-based biosensors", Micromachines, 11, 176 (2020).
  28. A. Parveen and J. Prakash, "Biosensing Using Liquid Crystals", Resonance, 26, 1187 (2021).
  29. Z. Wang, T. Xu, A. Noel, Y. Chen, and T. Liu, "Applications of liquid crystals in biosensing", Soft Matter, 17, 4675 (2021).
  30. R. Qu and G. Li, "Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications", Biosensors, 12, 205 (2022).
  31. K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itohand, and M. Hasegawa, "Alignment technology and applications of liquid crystal devices", Taylor & Francis, New York, USA, 2005.
  32. K. Ichimura, "Photoalignment of liquid-crystal systems", Chem. Rev., 100, 1847 (2000).
  33. J. Stohr and M. G. Samant, "Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model", J. Electron. Spectrosc., 98, 189 (1999).
  34. M. Schadt, "Liquid crystal materials and liquid crystal displays", Annu. Rev. Mater., 27, 305 (1997).
  35. A. Natansohn and P. Rochon, "Photoinduced motions in azocontaining polymers", Chem. Rev., 102, 4139 (2002).
  36. M. Ree, "High performance polyimides for applications in microelectronics and flat panel displays", Macromol. Res., 14, 1 (2006).
  37. J. H. Park, J. C. Jung, B. Sohn, S. W. Lee, and M. Ree, "Synthesis and characterization of novel polyimides containing stilbene unit in the side chain and their controllability of nematic liquid crystal alignment on the rubbed surfaces", J. Polym. Sci. Pol. Chem., 39, 3622 (2001).
  38. H. Sakuma, "Potential energy surface of 4-hexyl-4'-cyanobiphenyl (6CB) on graphite surface: a DFT study with van der Waals corrections", Mol. Simulat., 38, 425 (2012).
  39. H. Yu, J. Li, T. Ikeda, and T. Iyoda, "Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique", Adv. Mater., 18, 2213 (2006).
  40. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, "Near-surface alignment of polymers in rubbed films", Nature, 374, 709 (1995).
  41. D. Seo and S. Kobayashi, "Effect of high pretilt angle for anchoring strength in nematic liquid crystal on rubbed polyimide surface containing trifluoromethyl moieties", Appl. Phys. Lett., 66, 1202 (1995).
  42. Y. J. Kim, Z. Zhuang, and J. S. Patel, "Effect of multidirection rubbing on the alignment of nematic liquid crystal", Appl. Phys. Lett., 77, 513 (2000).
  43. A. Lien, R. A. John, M. Angelopoulos, K. W. Lee, H. Takano, K. Tajima, and A. Takenaka, "UV modification of surface pretilt of alignment layers for multidomain liquid crystal displays", Appl. Phys. Lett., 67, 3108 (1995).
  44. W. Lee, Y. S. Choi, Y. Kang, J. Sung, D. Seo, and C. Park, "Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks", Adv. Funct. Mater. 21, 3843 (2011).
  45. J. Y. Ho, V. G. Chigrinov, and H. S. Kwok, "Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer", Appl. Phys. Lett., 90, 243506 (2007).
  46. M. Liu, X. Zheng, S. Gong, L. Liu, Z. Sun, L. Shao, and Y. Wang, "Effect of the functional diamine structure on the properties of a polyimide liquid crystal alignment film", RSC Adv., 5, 25348 (2015).
  47. M. Ghosh, "Polyimides: fundamentals and applications", 1st ed., Marcel Dekker, New York, USA, 1996.
  48. M. B. Feller, W. Chen, and Y. R. Shen, "Investigation of surface-induced alignment of liquid-crystal molecules by optical second-harmonic generation", Phys. Rev. A, 43, 6778 (1991).
  49. N. Van Aerle and A. Tol, "Molecular orientation in rubbed polyimide alignment layers used for liquid-crystal displays", Macromolecules, 27, 6520 (1994).
  50. K. Lee, S. Paek, A. Lien, C. Durning, and H. Fukuro, "Microscopic molecular reorientation of alignment layer polymer surfaces induced by rubbing and its effects on LC pretilt angles", Macromolecules, 29, 8894 (1996).
  51. K. Weiss, C. Woll, E. Bohm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann, "Molecular orientation at rubbed polyimide surfaces determined with X-ray absorption spectroscopy: Relevance for liquid crystal alignment", Macromolecules, 31, 1930 (1998).
  52. R. Meister and B. Jerome, "The conformation of a rubbed polyimide", Macromolecules, 32, 480 (1999).
  53. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S. Wang, F. W. Harris, S. Z. Cheng, S. Hong, and X. Zhuang, "Rubbinginduced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains", J. Am. Chem. Soc., 123, 5768 (2001).
  54. D. Kim, M. Oh-e, and Y. R. Shen, "Rubbed polyimide surface studied by sum-frequency vibrational spectroscopy", Macromolecules, 34, 9125 (2001).
  55. K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, "Continuous control of liquid crystal pretilt angle from homeotropic to planar", Appl. Phys. Lett., 90, 194102
  56. S. W. Lee, S. I. Kim, Y. H. Park, M. Reea, Y. N. Rim, H. J. Yoon, H. C. Kim, and Y. B. Kim, "Liquid-crystal alignment on the rubbed film surface of semi-flexible copolyimides containing n-alkyl side groups", Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst., 349, 279 (2000).
  57. Y. J. Lee, Y. W. Kim, J. D. Ha, J. M. Oh, and M. H. Yi, "Synthesis and characterization of novel polyimides with 1-octadecyl side chains for liquid crystal alignment layers", Polym. Adv. Technol., 18, 226
  58. S. W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim, S. I. Kim, S. Park, J. C. Jung, K. H. Lee, and M. Ree, "Rubbing-induced surface morphology and polymer segmental reorientations of a model brush polyimide and interactions with liquid crystals at the surface", Chem. Mater., 15, 3105 (2003).
  59. S. B. Lee, G. J. Shin, J. H. Chi, W. Zin, J. C. Jung, S. G. Hahm, M. Ree, and T. Chang, "Synthesis, characterization and liquid-crystal-aligning properties of novel aromatic polypyromellitimides bearing (n-alkyloxy) biphenyloxy side chains", Polymer, 47, 6606 (2006).
  60. H. Kang, J. S. Park, D. Kang, and J. Lee, "Liquid crystal alignment property of n-alkylthiomethyl-or n-alkylsulfonylmethyl-substituted polystyrenes", Polym. Adv. Technol., 20, 878 (2009).
  61. H. Kang, T. Kim, D. Kang, and J. Lee, "4-Alkylphenoxymethyl-Substituted Polystyrenes for Liquid Crystal Alignment Layers", Macromol. Chem. Phys., 210, 926 (2009).
  62. L. Chen, Y. Cao, T. Fang, W. Yue, J. Wang, X. Zhang, and F. Yang, "Synthesis and characterization of degradable polyimides from p-phenylenedioxybis (5-amino-2-pyridine)", Polym. Degrad. Stab., 98, 839 (2013).
  63. Y. Zhang, C. Wang, W. Zhao, M. Li, X. Wang, X. Yang, X. Hu, D. Yuan, W. Yang, and Y. Zhang, "Polymer stabilized liquid crystal smart window with flexible substrates based on low-temperature treatment of polyamide acid technology", Polymers, 11, 1869 (2019).
  64. K. Ruan, Y. Guo, and J. Gu, "Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness", Macromolecules, 54, 4934 (2021).
  65. L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, and J. T. Bloking, "Transparent and conductive paper from nanocellulose fibers", Energy Environ. Sci., 6, 513 (2013).
  66. K. S. Mikkonen and M. Tenkanen, "Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans", Trends Food Sci. Technol., 28, 90 (2012).
  67. D. Das and A. Mukherjee, "Biomaterial film for soluble organic sorption and anti-microbial activity in water environment", Bioresour. Technol., 110, 412 (2012).
  68. R. Zhao, P. Torley, and P. J. Halley, "Emerging biodegradable materials: starch-and protein-based bio-nanocomposites", J. Mater. Sci., 43, 3058 (2008).
  69. H. Kang, J. Lee, B. Nam, and J. W. Bae, "Liquid crystal alignment behavior on transparent cellulose films", RSC Adv., 5, 38654 (2015).
  70. J. W. Bae, E. Sohn, and H. Kang, "Liquid Crystal Alignment Behavior on Rubbed Films of Cellulose Acetate", Mol. Cryst. Liquid Cryst., 626, 215 (2016).
  71. R. S. Banegas, C. F. Zornio, A. d. M. Borges, L. C. Porto, and V. Soldi, "Preparation, characterization and properties of films obtained from cross-linked guar gum", Polimeros, 23, 182 (2013).
  72. R. J. Chudzikowski, "Guar gum and its applications", J Soc Cosmet Chem., 22, 43 (1971).
  73. V. D. Prajapati, G. K. Jani, N. G. Moradiya, N. P. Randeria, B. J. Nagar, N. N. Naikwadi. and B. C. Variya, "Galactomannan: a versatile biodegradable seed polysaccharide", Int. J. Biol. Macromol., 60, 83 (2013).
  74. D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers", J Appl Polym Sci, 13, 1741 (1969).
  75. B. R. Bikson and Y. F. Freimanis, "Cause of the discolouration of aromatic polyimides", Polym. Sci. (USSR), 12, 81 (1970).
  76. F. Li, S. Fang, J. J. Ge, P. S. Honigfort, J. Chen, F. W. Harris, and S. Z. Cheng, "Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films", Polymer, 40, 4571 (1999).
  77. J. Cardoso, O. GomezDaza, L. Ixtlilco, M. Nair, and P. K. Nair, "Conductive copper sulfide thin films on polyimide foils", Semicond. Sci. Technol., 16, 123 (2001).
  78. Y. Li, S. Fu, Y. Li, Q. Pan, G. Xu, and C. Yue, "Improvements in transmittance, mechanical properties and thermal stability of silica-polyimide composite films by a novel sol-gel route", Compos. Sci. Technol., 67, 2408
  79. S. Paek, C. J. Durning, K. Lee, and A. Lien, "A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles", J. Appl. Phys., 83, 1270 (1998).
  80. B. S. Ban and Y. B. Kim, "Surface free energy and pretilt angle on rubbed polyimide surfaces", J. Appl. Polym. Sci., 74, 267 (1999).
  81. H. Wu, C. Wang, C. Lin, R. Pan, S. Lin, C. Lee, and C. Kou, "Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films", J. Phys. D Appl. Phys., 42, 155303 (2009).
  82. G. Dodi, D. Hritcu, and M. I. Popa, "Carboxymethylation of guar gum: synthesis and characterization", Cell Chem. Technol., 45, 171 (2011).
  83. K. S. Soppirnath and T. M. Aminabhavi, "Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application", Eur. J. Pharm. Biopharm., 53, 87 (2002).
  84. Y. Huang, J. Lu, and C. Xiao, "Thermal and mechanical properties of cationic guar gum/poly (acrylic acid) hydrogel membranes", Polym. Degrad. Stab., 92, 1072 (2007).