• Title/Summary/Keyword: Optical & Mechanical property

Search Result 137, Processing Time 0.031 seconds

Evaluation of Mechanical Properties in Inconel 82/182 Dissimilar Metal Welds (인코넬 82/182 이종금속 용접부의 기계물성 평가)

  • Lee, Joung-Hoon;Jang, Chang-Heui;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.244-249
    • /
    • 2007
  • In several locations of the pressurized water reactors, dissimilar metal welds using inconel welding wires are used to join the low alloy steel nozzles to stainless steel pipes. To evaluate the integrity and design the dissimilar welds, tensile and fracture properties variations are needed. In this study, dissimilar metal welds composed of SA508 Gr.3 LAS, inconel 82/182 weld, and TP316 stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding technique. Microstructures were observed using optical and electron microscopes. Different tensile and fracture properties were observed depending on the specimen sampling position at room temperature and $320^{\circ}C,$ and that was discussed based on the microstructure characteristics. It was found that the strength at the bottom of weld was greater than at the top of the weld. Also, from the test data using small punch specimen, more detailed tensile property variations were evaluated.

  • PDF

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase (준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성)

  • Kim, Do Hyung;Kim, Young Kyun;Kim, Won Tae;Kim, Do Hyang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

Investigation of Microstructure and Mechanical Properties of KR60 Rail (KR60 레일의 미세조직과 기계적 물성 평가)

  • Choi, Wookjin;Cho, Hui Jae;Yun, Kyung-Min;Min, Kyung-Hwan;Lim, Nam-Hyoung;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.652-657
    • /
    • 2017
  • The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.

The Fabrication of Microstructures and Curing Characteristics in Photopolymer on the Microstereolithography using a Dynamic Pattern Generator (다이내믹 패턴 형성기를 이용한 마이크로 광 조형기술에서 미세 구조물 제작 및 수지경화특성에 관한 연구)

  • Kwon B.H.;Choi J.W.;Ha Y.M.;Kim H.S.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1181-1185
    • /
    • 2005
  • Microstereolithography has evolved from the stereolithography technique, and is also based on a light-induced layer-stacking manufacturing. Integral microstereolithography is proposed for building a 3D microstructure rapidly, which allows the manufacture of a complete layer by one irradiation only. In this study, we developed the integral microstereolithography apparatus based on the use of $DMD^{TM}$ as dynamic pattern generator. It is composed of Xenon-Mercury lamp, optical devices, pattern generator, precision stage, controllers and the control program. Also, we estimated curing characteristics in photopolymer. The relationship between the viscosity of diluent-oligomer solutions and curing width, irradiation time and curing property has been studied.

  • PDF

Effects of Rare Earth Metals Addition and Aging Treatment on the Corrosion Resistance and Mechanical Properties of Super Duplex Stainless Steels

  • 박용수;김순태;이인성;송치복
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.309-309
    • /
    • 1999
  • Effects of rare earth metals addition and aging treatment on corrosion resistance and mechanical properties of super duplex stainless steels were investigated using optical/SEM/TEM metallographic examination, an X-ray diffraction test, a potentiodynamic anodic polarization test and a tensile test. The performance of the experimental alloy with 0.32% REM addition was compared with commercial super duplex stainless steel such as SAF 2507 when they were exposed to solution annealing heat treatment and aging treatment. The corrosion resistance in CF environments and mechanical properties of the experimental alloy were found superior to those of the commercial duplex stainless steel. The REM with larger atomic radii than those of Cr, Mo and W may fill vacancies inside the matrix and around the grain boundaries, retarding formation of harmful intermetallic σ and χ phases. In addition, fine REM oxides/oxy-sulfides (1-3㎛) seemed to enhance the retardation effects. With REM additions, strength and ductility increased due to the phase and grain refinement caused by fine REM oxides and oxy-sulfides.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

A Study on the Processing Characteristic in the Compression Molding of Hybrid Thermoplastic Composites (하이브리드 열가소성 복합재료의 압축성형에서 공정특성에 관한 연구)

  • Heo, Seok-Bong;Lee, Joong-Hee;Shin, Gwi-Su;Rhee, Kyoung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2550-2555
    • /
    • 2002
  • Hybrid composites usually are defined as composites having different types of reinforcements such as fibers and particles. The major advantage of hybrid composites is able to control the material properties such as optical, electrical, and mechanical properties. For this reason, hybrid composites are widely used in automotive, marine, household, and electrical industries. The objective of this work was to investigate processing characteristics in the compression molding of hybrid thermoplastic composites. The mechanical properties of composites manufactured in various forming conditions were monitored. The composites contained randomly oriented long carbon fiber and carbon black in polypropylene(PP) matrix were used. The carbon fiber contents of composites were 5%, 10%, 15%, and 20%, and carbon black contents were 5%, 10%, 15%, 20%, and 25% by weight. Compression molding was conducted at various mold temperatures. Crstallinity was also measured by using X-RD. The tensile modulus of the composites increased with increasing the mold temperature. However, the impact strength of the composites decreased as the mold temperature increased.

Tribological and mechanical properties of plasssma sprayed 316L and 420 stainless steel layers on the AZ91D commercial magesium alloy (AZ91D 상용 마그네슘합금위에 316L과 420의 스테인레스 스틸의 플라즈마 코팅층의 마모와 기계적 특성)

  • 이수완;박종문;이명호;짐진수
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.365-373
    • /
    • 1997
  • 316L and 420 Stainless steels were deposited onto AZ9ID commercial magnesium alloy by plasma spray process with various gas flow rate of, TEX>$H_2$ secondary gas. And hardness as well as were track volume, coefficient of friction also had been measured. wear and hardness were measured by using reciprocal configuration tribometer and microghardness tester, respectively. Also, the microstructure of the coatings surface the cross sectional area of coating surface and cross sectional area of coaing/Substrate interface had been analyzed with Scanning Electron Microscope(SEM) and Optical microscope(OM). Finally, optimal process parameters for the improvement of coating efficiency such as mechanical property and wear behavior were examined.

  • PDF

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.