• Title/Summary/Keyword: Optic-fiber system

Search Result 455, Processing Time 0.036 seconds

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

A STUDY ON THE OPTIMAL ILLUMINATION POWER OF DIFOTI (DIFOTI 영상 최적화를 위한 광량에 대한 연구)

  • Kim, Jong-Bin;Kim, Jong-Soo;Yoo, Seung-Hoon;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • This study was performed to compare the quality of image processing between the newly developed prototype using light emitting diode(LED) and the conventional $DIFOTI^{TM}$ system(EOS Inc., USA). To estimate the optimal light emitting power for the improved images, primary enamel surfaces treated under Carbopol 907 de-mineralizing solution were taken daily during 20 days of experimental periods by both DIFOTI systems. The results of comparative analyses on the images obtained from both systems with polarized image as gold standard can be summarized as follows: 1. Trans-illumination indices of images taken from primary enamel surfaces were decreased with time in both systems. 2. The differences of intensity of luminance between sound and de-mineralized enamel surface in prototype DIFOTI system was shown to be relatively smaller than conventional $DIFOTI^{TM}$ system. 3. From the comparative analysis of images from both DIFOTI system with polarized images as gold standard, the difference between sound and de-mineralized enamel surface of intensity of luminance of $DIFOTI^{TM}$ system was more correlated to polarized images than prototype of DIFOTI system. With the optimal LED emitting power, the control of aperture of digital camera is considered as the another key factor to improve the DIFOTI images. For the best image quality and analysis, the development of the improved image processing software is required.

An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas (2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Kim, Sung-Chul;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.287-294
    • /
    • 2005
  • In this paper, an optical true time-delay (TTD) for two-dimensional (2-D) phased array antennas (PAAs), composed of a multi-wavelength optical source and a fiber optic delay line matrix consisting of $2\times2$ optical switches with optical fiber connected between cross ports, has been proposed. A 2-bit $\times4-bit$ optical TTD for 10-GHz 2-D PAAs has been implemented by cascading a wavelength dependent TTD (WD-TTD) and a wavelength independent TTD (WI-TTD). The unit time delay for WD-TTD and WI-TTD have been chosen as ${\Delta}T=12ps$ and $\Delta\tau=6ps$, respectively. Time delay have been measured at all radiation angles. The maximum delay error for WD-TTD was measured to be 3 ps due to jitter incurred from gain switching. For the case of WI-TTD, error was within ${\pm}\;1\;ps$. The proposed optical TTD for a 2-D PAA has the following advantages: 1) higher gain compared to one-dimensional linear PAAs, 2) stabilization of optical power and wavelength by using a multi-wavelength optical source, and 3) fast beam scan and simple operation due to electronic control of the $2\times2$ optical switches matrix on a column-by-column basis.

Convergence Monitoring Technologies for Traffic Tunnels - State of the Art (터널의 내공변위 자동화 계측기술 분석)

  • Chung So-Keul
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.1-8
    • /
    • 2005
  • Measurement of convergence was/is carried out manually throughout the world for tunnels under construction. However, manual method has certain limitations in terms of applicability for the tunnels in operation. This paper describes state of the art of convergence monitoring systems which are available for measuring displacement of existing tunnels. These technologies are analyzed as follows: 1 The Sofo system using the fiber optic sensors has been applied to the stress measurement of the tunnel lining. It has not yet been used for the monitoring of tunnel convergence because of its cost and reliability 2. A TPMS(Tunnel Profile Monitoring System) using tilt sensors and displacement sensors is used for the convergence monitoring of highway tunnels, subway tunnels and underground ducts. 3. A BCS(Bassett Convergence System) using a pair of tilt sensors can be used for the convergence monitoring of tunnels, however the accuracy of the measurement has to be improved because it uses AC input voltage during data acquisition. The system has to be validated before it can be applied to the tunnels in operation. Convergence monitoring systems using TPMS and/or BCS are recommended to be evaluated and improved by a series or tests in tunnels under construction in order to be applied to the main measuring section and the tunnels in operation.

An Analysis of FSK Transmission Characteristics of Spectrum Sliced Optical Signals (스펙트럼 분할된 광신호의 FSK 전송 특성 해석)

  • Ha, Eun-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.339-344
    • /
    • 2016
  • Since transmissions of large amounts of data are frequent, users require more bandwidth, and the need for communications networks having greater bandwidth is increasing. One communications network satisfying this need is an optical communications network. Therefore, studies to increase the transmission capacity of optical communications systems have been carried out. However, in a general optical communications system, a signal transmitted through optical fiber (a transmission medium) is detected through direct detection in the receiving system. This method has a disadvantage in that the entire bandwidth of the optical signal cannot be utilized. Also, when transmitting an optical signal, there is a problem where the signal-to-noise ratio is affected by neighboring channels. To overcome this situation, various studies are being conducted to minimize the influence of external interference and noise. This paper overcomes the situation by transmitting spectrum-sliced signals using the digital transmission system, FSK. Analyzing the characteristics of the signals detected in the receiver of the optical communications system, Gaussian distribution is used for the PDF of the spectrum-sliced signal, and the signal at the receiving end of the optical communications system is assumed to have a k-square distribution. The results of the analysis confirmed it is better to transmit the spectrally divided signal rather than transmit the laser source.

The Fundamental Studies and Development of Modified Electrothermal Vaporization Hollow Cathode Glow Discharge Cell (개선된 전열증기화 속빈음극관 글로우 방전셀의 기초연구 및 개발)

  • Lee, Seong-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Kim, Kyu-Whan;Woo, Jeong-Su;Lee, Chang-Su;Kang, Dong-Hyun;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • The electrothermal vaporization (ETV) hollow cathode glow discharge atomic emission spectrometer for analysis of liquid sample has been developed and characterized. This system has improved the sample introduction method of electrothermal vaporization and the hollow cathode glow discharge. The sample introduction method was possible to provide high analyte transport efficiency to the plasma by helix coil made of tungsten material. In addition, small volume samples (<$30{\mu}{\ell}$) could be used. The system has glow discharge cell with special design for improvement of precision. The effect of discharge parameters such as discharge power, gas flow rate has been studied to find optimum condition. The emitted light was effectively carried into detector by fiber optic cable in UV region. The calibration curve of Pb, Cd were obtained with 3 samples.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Fabrication of Multiple-Frequency Exposure System for In Vitro Experiment (세포 실험용 다중 주파수 동시 노출 장치 제작)

  • Kim, Tae-Hong;Seo, Min-Gyeong;Mun, Ji-Yeon;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.213-219
    • /
    • 2012
  • Recently, we are simultaneously exposed by various electromagnetic sources due to an increase of mobile communication services. However, EMF(Electric, Magnetic and Electromagnetic Field) study has been performed mainly about only single frequency. The objective of this paper is to develop an multiple-frequency exposure system for in vitro experiment. The exposure unit for in vitro experiments was designed by radial transmission line type to get broadband characteristics to generate signals of CDMA at 836.5 MHz and WCDMA at 1950 MHz frequency simultaneously. The modulated signals were delivered to the conical antenna through amplifier, digital attenuator and RF combiner. SAR values were obtained by the averaged values of 3 measured values at 9 points in petri dish using the fiber optic temperature probe. The measured return loss was under -15 dB. For 1 W input power, the mean value and standard deviation of SAR were $0.105{\pm}0.019$ for the CDMA frequency and $0.262{\pm}0.055$ for the WCDMA frequency.

Determination of the water content in citrus leaves by portable near infrared (NIR) system (근적외분광분석법을 이용한 감귤잎의 수분 측정)

  • Suh, Eun-Jung;Woo, Young-Ah;Lim, Hun-Rang;Kim, Hyo-Jin;Moon, Doo-Gyung;Choi, Young-Hun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-282
    • /
    • 2003
  • The amount of water for the cultivation of citrus is different based on the growing period. The effect of water stress induces to enhance of sugar accumulation in citrus. The water content in the leaves of citrus can be a index for watering during cultivation. The purpose of this study is to determine the water content of citrus leaves non-destructively by using near infrared spectroscopy (NIRS). Citrus leaves were prepared from 'Okitsu' Satusuma mandarin leaves (Citrus unshiu Marc.) ranging from 20.80 to 69.98% of water content by loss on drying method, and NIR reflectance spectra of citrus leaves were acquired by using a fiber optic probe. It was found that the variation of absorbance band 1450 nm from OH vibration of water depending on the water content change. Partial least squares regression (PLSR) was applied to develop a calibration model over the spectral range 1100-1700 nm. The calibration model predicted the water content for the validation set with a standard errors of prediction (SEP) of 0.97%. In order to validate the developed calibration model, routine analyses were performed using independently prepared citrus leaves. The NIR routine analyses showed good results with those of loss on drying method with a SEP of 0.81%. The rapid and non-destructive determination of the water content in citrus leaves was successfully performed by portable NIR system.

Exploration of suitable rice cultivars for close mixed-planting with upland-adapted cereal crop

  • Shinohara, Nodoka;Shimamoto, Hitoshi;Kawato, Yoshimasa;Wanga, Maliata A.;Hirooka, Yoshihiro;Yamane, Koji;Iijima, Morio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.304-304
    • /
    • 2017
  • In semi-arid countries such as Namibia, the flooding unexpectedly happens in a rainy season, causing losses in the yield of upland-adapted cereal crop. In flooding conditions, rice roots sequentially form aerenchyma and a barrier to radial oxygen loss (ROL), and oxygen is released into the rhizosphere near the root tips. Iijima et al. (2016) and Awala et al. (2016) reported that close mixed-planting with rice can mitigate the flood stress of co-growing upland-adapted cereal crop by modifying their rhizosphere microenvironments via the oxygen released from the rice roots. Moreover, by using the model system of hydroponic culture, it was confirmed that oxygen from rice roots was transferred to co-growing upland-adapted cereal crop in close mixed planting system (Kawato et al., 2016). However, it is not sure whether the ability of oxygen release varies among rice cultivars, because Kawato et al. (2016) used only one japonica cultivar, Nipponbare (Oryza sativa). The objective of this study was to compare the ability of oxygen release in rhizosphere among rice cultivars. The experiment was conducted in a climate chamber in Kindai University. We used 10 rice cultivars from three different rice species (O. sativa (var. japonica (2), var. indica (3)), Oryza glaberrima Steud. (2) and their interspecific progenies (3)) to compare the ability of oxygen release from the roots. According to the method by Kawato et al. (2016), the dissolved oxygen concentration of phase I (with shoot) and phase II (without shoot) were measured by a fiber optic oxygen-sensing probe. The oxygen released from rice roots was calculated from the difference of the measurements between phase I and phase II. The result in this study indicated that all of the rice cultivars released oxygen from their roots, and the amount of released oxygen was significantly correlated with the above-ground biomass (r = 0.710). The ability of oxygen release (the amount of the oxygen release per fresh root weight) of indica cultivars (O. sativa) tended to be higher as compared with the other cultivars. On the other hand, that of African rice (O. glaberrima) and the interspecific progenies tended to be lower. These results suggested that the ability of oxygen release widely varies among rice cultivars, and some of indica cultivars (O. sativa) may be suitable for close mixed-planting to mitigate flood stress of upland-adapted cereal crop.

  • PDF