• Title/Summary/Keyword: Optic flow

Search Result 61, Processing Time 0.022 seconds

A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator (냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan (소형 축류홴의 난류유동 특성치에 대한 LDA 측정)

  • Kim, Jang-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

Investigation on the Turbulent Flow-Field of a Small-size Axial Fan with Different Operating Points (운전점이 다른 소형 축류홴의 난류 유동장 고찰)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2008
  • The turbulent flow characteristics around a small-size axial fan(SSAF) for a refrigerator are strongly dependent upon the operating points. Four operating points such as $\phi$ =0.1, 0.18, 0.25 and 0.32 were adopted in this study to investigate three-dimensional turbulent flow characteristics around the SSAF by using a fiber-optic type Laser Doppler Anemometer(LDA) system. Downstream mean velocity profiles of the SSAF along the radial distance show that axial and tangential velocity components exist predominantly, except $\phi$ = 0.1, and have a maximum value at $r/R{\fallingdotseq}0.8$, but radial velocity component having a relatively small value only turns flow direction to the outside or the central part of the SSAF. The turbulent intensity shows that the radial component exists most greatly after $r/R{\fallingdotseq}0.5$. Downstream turbulent kinetic energy at $\phi$ = 0.25 and 0.32 together has the largest peak value at $r/R{\fallingdotseq}0.9$.

  • PDF

Thermal Inspection of GFRP using Liquid Crystal (액정을 이용한 GFRP의 열적시험법에 관한 연구)

  • Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 1990
  • Flaws in GFRP(Glass Fiber Reinforced Plastics) were thermally detected using cholesteric liquid crystals. Presence of flaws changes the thermal conductivity of GFRP, and disturbs heat flow. When a uniform heat source is applied, the surface temperature of flawed region is different from that of sound region. The surface temperature distributions were measured by thermo-optic properties of liquid crystal. Since the colors of liquid crystal indicate temperature distribution of GFRP surface, the thermal disturbance by flaws could be detected. The locations of flaws in GFRP could be determined from the distribution of liquid crystal colors.

  • PDF

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

A review of event perception: The first step for convergence on robotics (사건지각에 대한 종설: 로봇공학과의 융복합을 위한 첫단계)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.357-368
    • /
    • 2015
  • People observe lots of events around the environment and we can easily recognize the nature of an event from the resulting optic flow. The questions are how do people recognize events and what is the information in the optic flow that enables observers to recognize events. Motor theorists claim that human observers exhibit special sensitivity when perceiving events like speech or biological motion, because we both produce and perceive those events. However, direct perception theorists suggested that speech or biological motion is not special from the perception of all other kinds of event. The purpose of this review article is to address this controversy to critique the motor theory and to describe a direct realist approach to event perception. It is important to understand the fundamental information of how human perceive event perception for the convergence on robotics.

Optical Properties for Plasma Polymerization Thin Films Using Envelope Method By Spectrophotometry (ENVELOPE METHOD를 이용한 플라즈마 중합 유기박막의 광학특성)

  • Yoo, D.C.;Park, G.B.;Lee, D.C.;HwqangBo, C.K.;Jin, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.183-186
    • /
    • 1991
  • In order to prepare the functional organic optic meterials, the capacitive coupled gas flow type plasma polymerization apparatus was designed and manufactured. Styrene and para-Xylene monomer were adopt as organic materisl. Optical constant, refrative index, extinction coefficient of organic thin films by the gas flow type plasma polymerization appratus were determined by envelope method using spectrophotometry. The refractive index of plasma polymerized thin films was decreased in accordance to increase of wave length and discharge time. The extinction coefficient was very small compared with refractive index. From the experimental result of optical constant and film thickness, it was considered that the films which had required optical properties and thickness can be prepared by control of polymerization condition.

  • PDF

A Study on the Flow Characteristics of an Intermittent Fuel Spray (간헐적인 연료분무의 유동특성에 관한 연구)

  • Kim, Won-Tae;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1198-1206
    • /
    • 1997
  • The flow characteristics of an intermittent fuel injection into a stationary ambient air were investigated using gasoline. The measurements were made by two-channel, air cooling type Phase Doppler Anemometer(PDA) system (DANTEC, 750 MW). And a pintle type injector of MPI (Multi-point Port Injection) system was utilized as a fuel injector. The PDA receiver optic was set up in a 60.deg. C forward scatter arrangement to obtain the optimum scattering signal of fuel droplets. The data were obtained by synchronizing PDA system with the fuel injection period, and the axial and radial velocity and turbulent components of fuel droplets were mainly measured for the analysis of temporal and spatial distribution depending upon the fuel injection pressures.

Delineation of Groundwater and Estimation of Seepage Velocity Using High-Resolution Distributed Fiber-Optic Sensor

  • Chang, Ki-Tae;Pham, Quy-Ngoc
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.39-43
    • /
    • 2015
  • This study extends the Distributed Temperature Sensing (DTS) application to delineate the saturated zones in shallow sediment and evaluate the groundwater flow in both downward and upward directions. Dry, partially and fully saturated zones and water level in the subsurface can be recognized from this study. High resolution seepage velocity in vertical direction was estimated from the temperature data in the fully saturated zone. By a single profile, water level can be detected and seepage velocity in saturated zone can be estimated. Furthermore, thermal gradient analysis serves as a new technique to verify unsaturated and saturated zones in the subsurface. The vertical seepage velocity distribution in the recognized saturated zone is then analyzed with improvement of Bredehoeft and Papaopulos' model. This new approach provides promising potential in real-time monitoring of groundwater movement.

Experimental Study on the Near Wake Behind a Circular Cylinder with Helical Surface Protrusions (나선형의 표면돌출물이 부착된 원주의 근접후류에 관한 실험적 연구)

  • Gwon, Gi-Jeong;Kim, Hyeong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2601-2610
    • /
    • 1996
  • Surface protrusions have been attached on a cylinder surface to reduce the flow-induced structural vibration by controlling the wake flow. Wind tunnel tests on the near wake of a circular cylinder with surface protrusions were carried out to investigate the flow characteristics of the controlled wake. Three experimental models were used in this experiment; one plain cylinder of diameter D and two cylinders wrapped helically by three small wires of diameter d=0.075D with pitches of 5D and 10D, respectively. Free stream velocity was ranged to have Reynolds number from 5000 to 50,000. Streamwise and vertical velocity components of the wake were measured by a hot-wire anemometry. The spanwise velocity component measured by a one-component fiber optic LDV revealed that time-averaged wake field has a nearly two-dimensional structure. It was found that the surface protrusions elongate the vortex formation region, which decrease the vortex shedding frequency. The suppression of vortices caused by the surface protrusions increases the velocity deficit in the center of wake region.