• Title/Summary/Keyword: Optic Fiber Sensor

Search Result 518, Processing Time 0.024 seconds

Experimental Analysis of Flow Induced Vibration Measurement Using Fiber Optic Sensor (광섬유 센서를 이용한 유체유기진동의 실험적 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.274-286
    • /
    • 2009
  • Fiber optic sensor is widely used in measuring acoustic and vibration. Especially interferometric sensors are more suitable to measure the acoustic signal. In this paper, a Fabry-Perot interferometric fiber optic sensor was used to measure flow induced vibration. This vibration also measured using an accelerometer, and the data was compared to one other. The venture, nozzle, drop barrel, and rapid expansion in the pipeline are the measuring objects. The flow rate is changed from 50 L/min to 150 L/min and the average flow velocity was about 7 m/s. Based on the experimental results the suggested fiber optic sensor detects flow induced vibration effectively. Therefore, this kind of fiber optic sensor can be applied to the monitoring the flow induced noise and vibration such as pipelines, cables, buildings.

Fiber-optic interferometric temperature sensor using a hollow fiber (중공 광섬유를 이용한 광섬유 간섭계형 온도센서)

  • Park, Jae-Hee;Kim, Kwang-Taek
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.192-196
    • /
    • 2007
  • A fiber-optic interferometric temperature sensor is fabricated using a hollow optical fiber with 8 um air hole. This interferometric sensor for measuring temperature consists of 13 mm long hollow optical fiber whose one end is attached to the single mode fiber and the other end is cleaved. After the sensor is put in a furnace, the phase change of the sensor output signal is measured as the temperature of the furnace increases from $28^{\circ}C$ to $100^{\circ}C$. The phase change of the fiber sensor is proportional to the change of temperature and the relationship between the change of phase and temperature is approximately linear. The sensitivity of this sensor is $2.7{\;}radians/^{\circ}C$.

Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor (광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

Application of a fiber optic TR-EEPI sensor to detect deformation and failure in composite materials (복합재료의 변형 및 파손탐지를 위한 광섬유 TR-EFPI 센서의 적용)

  • 박래영;권일범;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.31-34
    • /
    • 2002
  • A study on the method that can measure the internal strain of composite materials is performed to monitor the health status of composite structures. A fiber optic sensor was constructed using the total reflected extrinsic Fabry-Perot interferometer(TR-EFPI) probe with a broadband light source. Result obtained from electrical strain gage adhered on the aluminum beam specimen was compared with that from the fiber optic TR-EFPI sensor and showed a good agreement. It was found that fiber optic TR-EFPI sensor system was adequate for monitoring the strain and thus failure processes in the interior of composite materials.

  • PDF

Development of Underground Displacement and Convergence Auto-Measuring Program for the Tunnel Using the Fiber Optic Sensor (광섬유 센서를 이용한 터널 지중 및 내공변위 자동계측 프로그램 개발)

  • Choi, Myong-Ho;Yoon, Ji-Son;Kwon, Oh-Duk;Kwon, Oh-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1361-1368
    • /
    • 2005
  • In this paper, the theoretical method of measuring the tunnel convergence and underground displacement, the objective indices of assessing safety for tunnel construction, using the fiber optic sensor is studied by developing the program to automatically measure them. The model test of Con'c beam is conducted to evaluate reliability of the fiber optic sensor. Furthermore, using the RS232 communication protocol as well as Visual C# and Visual C++, the programming tools, the program was developed to detect automatically the measured value of the fiber optic sensor, calculate the tunnel convergence and underground displacement, predict the deformed shape of the tunnel, and evaluate loosening zone due to the tunnel excavation.

  • PDF

생물공정 모니터링을 위한 Fiber Optic 생물센서 개발

  • Son, Ok-Jae;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.819-822
    • /
    • 2001
  • In this study a fiber optic biosensor has been developed to on-line monitor the concentrations of oxygen and glucose. The oxygen concentrations in solution and gas phase monitored by the fiber optic sensor has been compared with those by a dissolved oxygen electrode and an IR-type $O_2$ analyzer. The fiber optic glucose sensor has been made by immobilizing glucose oxidase on the tip of the optic fiber and used to on-line monitor the concentration of glucose in a fermentation process.

  • PDF

Applications of fiber optic sensors in civil engineering

  • Deng, Lu;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.577-596
    • /
    • 2007
  • Recent development of fiber optic sensor technology has provided an excellent choice for civil engineers for performance monitoring of civil infrastructures. Fiber optic sensors have the advantages of small dimensions, good resolution and accuracy, as well as excellent ability to transmit signal at long distances. They are also immune to electromagnetic and radio frequency interference and may incorporate a series of interrogated sensors multiplexed along a single fiber. These advantages make fiber optic sensors a better method than traditional damage detection methods and devices to some extent. This paper provides a review of recent developments in fiber optic sensor technology as well as some applications of fiber optic sensors to the performance monitoring of civil infrastructures such as buildings, bridges, pavements, dams, pipelines, tunnels, piles, etc. Existing problems of fiber optic sensors with their applications to civil structural performance monitoring are also discussed.

Temperature Compensation of a Strain Sensing Signal from a Fiber Optic Brillouin Optical Time Domain Analysis Sensor

  • Kwon, Il-Bum;Kim, Chi-Yeop;Cho, Seok-Beom;Lee, Jung-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.106-112
    • /
    • 2003
  • In order to do continuous health monitoring of large structures, it is necessary that the distributed sensing of strain and temperature of the structures be measured. So, we present the temperature compensation of a signal from a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor. A fiber optic BOTDA sensor has good performance of strain measurement. However, the signal of a fiber optic BOTDA sensor is influenced by strain and temperature. Therefore, we applied an optical fiber on the beam as follows: one part of the fiber, which is sensitive to the strain and the temperature, is bonded on the surface of the beam and another part of the fiber, which is only sensitive to the temperature, is located nearby the strain sensing fiber. Therefore, the strains can be determined from the strain sensing fiber while compensating for the temperature from the temperature sensing fiber. These measured strains were compared with the strains from electrical strain gages. After temperature compensation, it was concluded that the strains from the fiber optic BOTDA sensor had good coincidence with those values of the conventional electrical strain gages.

Detection of Excited Vibration frequency on the Latticed Fence Structure Using a Distributed Fiber Optic Sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.234-237
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber optic external vibration signal spplied to the latticed fence structure from 100Hz to several kHz. The interferometeric fiber optic sensor detected the excited vibration signal very effectively without any signal processing. The detected optical signals were compared and analyzed to the detected acclerometer signals.

  • PDF

Fabrication of Static Fiber Optic Gyrocompass (정적방식 광섬유 자이로콤파스의 제작)

  • 이석정;홍창희
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.2
    • /
    • pp.59-67
    • /
    • 1997
  • This paper describe the method and the result of making a fiber optic gyrocompass measuring the heading angles of a ship with a fiber optic sensor. As the method seeking for the heading angles, it is possible to get the heading angles by measuring the output signals from a stationary fiber optic sensor in at least three directions such as a heading direction and other two directions having phase difference ${\phi}1$ and ${\phi}2$ to the heading. We made the static fiber optic gyrocompass by a high performance fiber optic sensor having scale factor of 210mV/deg/s and resolution of 0.5deg/hr using this principle. The accuracy of this system was $0.29^{\circ}$ from 20 numbers of data measuring the arbitrary heading angle.

  • PDF