• Title/Summary/Keyword: Opportunity cost for power generators

Search Result 5, Processing Time 0.021 seconds

Proposing a New Method for Calculating Reactive Power Service Charges using the Reactive Power Market

  • Ro, Kyoung-Soo;Park, Sung-Jin
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.262-267
    • /
    • 2004
  • With the advent of electric power systems moving from a vertically integrated structure to a deregulated environment, calculating reactive power service charges has become a new and challenging theme for market operators. This paper examines various methods for reactive power management adopted throughout various deregulated foreign and domestic markets and then proposes an innovative method to calculate reactive power service charges using a reactive power market in a wholesale electricity market. The reactive power market is operated based on bids from the generating sources and it settles on uniform prices by running the reactive OPF programs of the day-ahead electricity market. The proposed method takes into account recovering not only the costs of installed capacity but also the lost opportunity costs incurred by reducing active power output to increase reactive power production. Based on the result of the reactive OPF program, the generators that produce reactive power within the obligatory range do not make payments whereas the generators producing reactive power beyond the obligatory range receive compensation by the price determined in the market. A numerical sample study is carried out to illustrate the processes and appropriateness of the proposed method.

Reactive Power Planning Considering Reactive Power Support Cost of Generator (전기 무효전력비용을 고려한 조상설비계획)

  • Lee, C.H.;Lee, S.H.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.181-183
    • /
    • 1999
  • As one of ancillary services, voltage support and reactive power service should be compensed properly for its contribution. In this paper, a cost-based reactive power planning is presented. which minimizes the total cost of reactive power support of generators and VAR compensation facility installation. Reactive power support of generator is evaluated by the opportunity costs of reduced energy sale considering the varying SMP(system marginal price) in power market, Gradient projection method is applied to solve this reactive power planning using IEEE14 bus system.

  • PDF

Analysis of Changes in Power Generation of Each Power Generation Company by the Fine-Dust Seasonal Management System (미세먼지 계절관리제로 인한 발전사별 전력생산량 변화 분석)

  • Kim, Bu-Kwon;Won, Doo Hwan
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.627-648
    • /
    • 2021
  • The fine-dust season management system refers to the policy of implementing enhanced reduction measures in transportation, power, business and living sectors in winter, when fine dust levels are high. The fine dust season management system is a regulatory policy that causes social costs and transfers to various economic players. Equity is an important issue for the cost burden. Therefore, in this study, the cost of each power generator was analyzed using the coal power generation reduction amount of each power generator to verify that the cost of the power sector is evenly distributed. In particular, the effect of the fine dust season management system on coal power generation of power generators was analyzed by applying a synthetic control method that can identify the time-variable effect of the policy. It was confirmed that the fine dust season management system reduced volume of fuel and power generation in coal power plants, resulting in an increase in the cost of the power generation sector, even considering the effect of some power demand due to the COVID-19 crisis. However, it could be seen that these costs were not distributed equally among the generators, and that they were more costly to the specific generators.Social costs incurred by fine dust season management need to be improved so that stakeholders are equally burdened.

A Study on the Effects of the System Marginal Price Setting Mechanism of the Cost Function in Operating Modes of the Combined Cycle Power Plants in Korea Electricity Market (한국전력시장에서 복합발전기의 운전조합별 비용함수의 계통한계가격(SMP) 결정메커니즘 영향에 관한 연구)

  • Yoon, Hyeok Jun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.107-128
    • /
    • 2021
  • It has been recognized that implementing the marginal price mechanism to CBP is not acceptable due to the lack of revenue of the marginal generators. This study shows that it is not the problem of marginal price mechanism but the structural problems originated by the suspension of restructuring, the technical limits of RSC program and inaccuracy of the generation cost estimation method. This study explains the method to calculate the cost function in operating modes of the CC generators and proposes the modeling for the CC generators in RSC program. To implementing the cost function in operating modes could give an opportunity to change the price setting mechanism from average to marginal cost. The price setting mechanism based on the marginal cost will be one of the main points to provide the right price signals and to introduce a real-time and A/S markets to prepare the energy transition era.

A Study on Electromagnetic Structural Design of AFPM Generator for Urban Wind Turbine (도시형 풍력발전기용 AFPM 발전기의 전자기적 구조설계에 관한 연구)

  • Cho, Jun-Seok;Choi, Se-Kwon;Kim, Ju-Yong;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.830_831
    • /
    • 2009
  • Wind power system attracts most interest because of high-energy efficiency with environment-friendly. Small scale wind power applications requires a cost effective and mechanically simple generator in order to be a reliable energy source. The use of direct driven generators, instead of geared machines, reduces the number of drive components, which offers the opportunity to reduce costs and increases system reliability and efficiency. This paper presents the development of a coreless axial-flux permanent magnet(AFPM) generator for a urban wind power system. It is analyzed by electromagnetic simulation program Maxwell 3D

  • PDF