• Title/Summary/Keyword: Opportunistic relay selection

Search Result 31, Processing Time 0.019 seconds

On the Secrecy Capacity in Cooperative Cognitive Radio Networks (협력 무선인지 네트워크에서의 보안 채널 용량 분석)

  • Nguyen, Van-Dinh;Kim, Hyeon-Min;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.803-809
    • /
    • 2014
  • In this paper, we investigate physical layer security in a cooperative cognitive radio networks (CRN) with a relay selection in the presence of a primary user and an eavesdropper. To protect the CRN from wiretapping by the eavesdropper, we propose employing an opportunistic relay selection scheme and multiple antennas at the destination that work based on the availability of channel state information at the receivers. Under these configurations, we derive an exact closed-form expression for the secrecy outage probability of the CRN, and also derive an asymptotic probability. Numerical results will be presented to verify the analysis.

Performance of Opportunistic Incremental NOMA Relay System in Fading Channels (페이딩 채널에서 기회전송 증가 NOMA 릴레이 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, we investigate the system performance of a cooperative relaying system of Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), which is considered promising application in fifth generation (5G) cellular networks. Previous studies have focused on the selected relays, however we include the maxmin relay selection and derive analytical outage probability of opportunistic incremental relaying systems. For the realistic mobile environment, the distributions of relays are modeled as a homogeneous Poisson point process (PPP). And maximal ratio combining (MRC) is adapted to improve the system performance at the destination node. Analytical results demonstrate the outage probability improves with the near/far user power ratio, and the cooperative relaying scheme can achieve low outage probability in comparison to the no relaying scheme. It is also conformed that the increase of the intensity of PPP cause higher gains of the spacial diversity and hence the performance improves.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

Performance Analysis of Interference-Mitigated Opportunistic Relay System (간섭이 완화된 기회주의적인 중계기 시스템의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, we proposed a method using the user mobile device to overcome the interference constraint without building a cooperative communication system. In addition, in order to mitigate interference, we apply the user mobile device selection method, and then exploit power allocation scheme in the user mobile device. The proposed protocol is analyzed in the Rayleigh fading environment, and the performance system is evaluated in terms of the bit error rate and the outage probability. The simulation results showed that when the proposed transmission algorithm is applied, the interference can be mitigated. Further, network overload problems can be solved in the weak channel interference. Therefore, we can increase the network capacity without additional relay.

Performance Analysis of the Amplify-and-Forward Scheme under Interference Constraint and Physical Layer Security (물리 계층 보안과 간섭 제약 환경에서 증폭 후 전송 기법의 성능 분석)

  • Pham, Ngoc Son;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.179-187
    • /
    • 2014
  • The underlay protocol is a cognitive radio method in which secondary or cognitive users use the same frequency without affecting the quality of service (QoS) for the primary users. In addition, because of the broadcast characteristics of the wireless environment, some nodes, which are called eavesdropper nodes, want to illegally receive information that is intended for other communication links. Hence, Physical Layer Security is applied considering the achievable secrecy rate (ASR) to prevent this from happening. In this paper, a performance analysis of the amplify-and-forward scheme under an interference constraint and Physical Layer Security is investigated in the cooperative communication mode. In this model, the relays use an amplify-and- forward method to help transmit signals from a source to a destination. The best relay is chosen using an opportunistic relay selection method, which is based on the end-to-end ASR. The system performance is evaluated in terms of the outage probability of the ASR. The lower and upper bounds of this probability, based on the global statistical channel state information (CSI), are derived in closed form. Our simulation results show that the system performance improves when the distances from the relays to the eavesdropper are larger than the distances from the relays to the destination, and the cognitive network is far enough from the primary user.

Performance of Opportunistic Incremental Relaying Systems with Random Relays in Rayleigh Fading Channels (Rayleigh 페이딩 채널에서 랜덤한 릴레이를 갖는 기회전송 증가 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • Opportunistic incremental relaying (OIR) system effectively overcomes the degradations caused by the fading of the wireless channel, and efficiently utilizes the wireless resources. Most of the OIR studies, however, assume spatially fixed relays. The user terminals which are usually served as relays move continuously, the assumption that the relays are fixed is not realistic. In this paper, the location of the spatially random user terminals are modeled by the Poisson point process, and the performance of an OIR system is derived. We noticed that the performance of the OIR system improves with the spatially random relays as well as with the fixed relays. Also the intensity of the relays and the transmitting directions toward the destination affect the performances. The performances of the maximal ratio combining (MRC) and the selection combining (SC) at the destination are compared.

Performance of DOT Relay System with MRC/GSC receiver in Rayleigh Fading Channels (레일레이 페이딩 채널에서 MRC/GSC 수신하는 DOT 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.11-16
    • /
    • 2012
  • Opportunistic transmit cooperative relaying (OTR) system has been interested for its ability to mitigate the fading in wireless channel without multiple antennas in a small terminal. In OTR system, only the relays that the received Signal-to-noise ratio (SNR) from a source is greater than the threshold transmit to the destination. However, the receiving branches of a destination in a realistic system is fixed, the excess number of signals from the transmit relays does not improve the system performance and consequently increases power consumption. In this paper, we adopt Double Opportunistic Transmit (DOT) cooperative diversity system which controls the average number of transmit relays. Although the average number of the transmit relays can be controlled by adjusting the two thresholds in DOT system, the instantaneous number of transmit relays is varying in fading channel. Thus we propose Maximal Ratio Combining (MRC) or Generalized Selection Combining (GSC) according to the number of the signals from relays at the destination. The outage probability of the proposed system is derived in closed form. The analytical results show that the system performance is improved with the number of the branches. Also it is noticed that when the number of the branches is fixed, the outage probability decreases with the increase of the average SNR of S-R path and R-D path.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

Cooperative Transmission Protocol based on Opportunistic Incremental Relay Selection over Rayleigh fading channels (레일리 페이딩 채널 상에서 기회주의적 증분형 중계기 선택 기법을 기반으로 한 협력 전송 알고리즘)

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.53-58
    • /
    • 2011
  • In this paper, we firstly propose a novel cooperative transmission protocol, which utilizes the advantages of mid-notes in the route from the source to the destination. Taking benefits from balancing between the received packet from the source and acknowledge message from the destination, the mid-node between the source and the destination is firstly considered to be the broadcaster. If its signal is successfully received from the source, it leads to consider the next nodes, which has closer distance to the destination than it. If one of these nodes correctly receives the signal, it performs broadcasting the signal to the destination instead of mid-node. Otherwise, the mid-node directs attention to these nodes being near to the destination. As the result, some nodes are unnecessary to be considered and passed over time. After that, we analyze some published selection relaying schemes based on geographic information to choose the best nodes instead of the instantaneous SNR as before. Finally, simulation results are given to demonstrate the correctness of the performance analyses and show the significant improvement of the selection relaying schemes based geographic information compared to the other ones.

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.