• 제목/요약/키워드: Opinion Detection

검색결과 45건 처리시간 0.023초

사회적 재난에 대한 트위터 여론 수렴 모델: '가습기 살균제' 사건을 중심으로 (A Collecting Model of Public Opinion on Social Disaster in Twitter: A Case Study in 'Humidifier Disinfectant')

  • 박준형;류법모;오효정
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권4호
    • /
    • pp.177-184
    • /
    • 2017
  • 최근 점차 복잡해져가는 사회구조 속에서 사회적 재난은 빈번하게 발생되고 있으며, 그 피해 규모 또한 점차 대형화되고 있다. 따라서 사회적 재난에 신속하게 대응함으로써, 추가 피해를 방지할 수 있는 체계화된 방법이 필요하다. 그 중에서도 소셜미디어, 특히 트위터는 신속성 및 확장성이 높아 재난에 대한 대응책으로 새롭게 주목받고 있다. 다양한 대중들의 관심이 드러나는 트위터의 여론을 수렴하는 것은 재난 발생에 신속하게 대응하고, 추가적인 피해를 방지하는데 유용한 수단으로 활용될 수 있다. 따라서 본 연구는 키워드 분석 및 이슈 트윗 추출, 시계열 분석 과정을 통해 사회적 재난에 대한 트위터 여론 수렴 방법을 제안하였으며, 최근 사회적으로 이슈화된 가습기 살균제 사건을 연구 대상으로 선정, 실제 적용가능성을 보이는데 의의가 있다.

NEW TOOLS FOR "SQUEAK-AND-RATTLE" AUTOMATIC DETECTION

  • Dufournet, D.;Veste, S.;Parodi, F.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1217-1220
    • /
    • 2001
  • The discomfort due to squeaks and rattles appearance inside the car has serious repercussions on consumer's opinion about acoustic quality of the vehicle and may change his economical behaviour. In this paper, we present a set of tools for squeaks and rattles processing implemented on a PC-based two channels analyser and grouped in a friendly interface. (omitted)

  • PDF

Detection of Political Manipulation through Unsupervised Learning

  • Lee, Sihyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1825-1844
    • /
    • 2019
  • Political campaigns circulate manipulative opinions in online communities to implant false beliefs and eventually win elections. Not only is this type of manipulation unfair, it also has long-lasting negative impacts on people's lives. Existing tools detect political manipulation based on a supervised classifier, which is accurate when trained with large labeled data. However, preparing this data becomes an excessive burden and must be repeated often to reflect changing manipulation tactics. We propose a practical detection system that requires moderate groundwork to achieve a sufficient level of accuracy. The proposed system groups opinions with similar properties into clusters, and then labels a few opinions from each cluster to build a classifier. It also models each opinion with features deduced from raw data with no additional processing. To validate the system, we collected over a million opinions during three nation-wide campaigns in South Korea. The system reduced groundwork from 200K to nearly 200 labeling tasks, and correctly identified over 90% of manipulative opinions. The system also effectively identified transitions in manipulative tactics over time. We suggest that online communities perform periodic audits using the proposed system to highlight manipulative opinions and emerging tactics.

A Security Model based on Reputation and Collaboration through Route-Request in Mobile Ad Hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4701-4719
    • /
    • 2015
  • A Mobile Ad hoc Network (MANET) consists of mobile nodes which co-operate to forward each other's packets without the presence of any centralized authority. Due to this lack of centralized monitoring authority, MANETs have become vulnerable to various kinds of routing misbehaviour. Sometimes, nodes exhibit non-cooperating behaviour for conserving their own resources and exploiting others' by relaying their traffic. A node may even drop packets of other nodes in the guise of forwarding them. This paper proposes an efficient Reputation and Collaboration technique through route-request for handling such misbehaving nodes. It lays emphasis not only on direct observation but also considers the opinion of other nodes about misbehaving nodes in the network. Unlike existing schemes which generate separate messages for spreading second-hand information in the network, nodes purvey their opinion through route-request packet. Simulation studies reveal that the proposed scheme significantly improves the network performance by efficiently handling the misbehaving nodes in the network.

A Study on Fake News Subject Matter, Presentation Elements, Tools of Detection, and Social Media Platforms in India

  • Kanozia, Rubal;Arya, Ritu;Singh, Satwinder;Narula, Sumit;Ganghariya, Garima
    • Asian Journal for Public Opinion Research
    • /
    • 제9권1호
    • /
    • pp.48-82
    • /
    • 2021
  • This research article attempts to understand the current situation of fake news on social media in India. The study focused on four characteristics of fake news based on four research questions: subject matter, presentation elements of fake news, debunking tool(s) or technique(s) used, and the social media site on which the fake news story was shared. A systematic sampling method was used to select a sample of 90 debunked fake news stories from two Indian fact-checking websites, Alt News and Factly, from December 2019 to February 2020. A content analysis of the four characteristics of fake news stories was carefully analyzed, classified, coded, and presented. The results show that most of the fake news stories were related to politics in India. The majority of the fake news was shared via a video with text in which narrative was changed to mislead users. For the largest number of debunked fake news stories, information from official or primary sources, such as reports, data, statements, announcements, or updates were used to debunk false claims.

SOPPY : A sentiment detection tool for personal online retailing

  • Sidek, Nurliyana Jaafar;Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권3호
    • /
    • pp.59-69
    • /
    • 2017
  • The best 'hub' to communicate with the citizen is using social media to marketing the business. However, there has several issued and the most common issue that face in critical is a capital issue. This issue is always highlight because most of automatic sentiment detection tool for Facebook or any other social media price is expensive and they lack of technical skills in order to control the tool. Therefore, in directly they have some obstacle to get faster product's feedback from customers. Thus, the personal online retailing need to struggle to stay in market because they need to compete with successful online company such as G-market. Sentiment analysis also known as opinion mining. Aim of this research is develop the tool that allow user to automatic detect the sentiment comment on social media account. RAD model methodology is chosen since its have several phases could produce more activities and output. Soppy tool will be develop using Microsoft Visual. In order to generate an accurate sentiment detection, the functionality testing will be use to find the effectiveness of this Soppy tool. This proposed automated Soppy Tool would be able to provide a platform to measure the impact of the customer sentiment over the postings on their social media site. The results and findings from the impact measurement could then be use as a recommendation in the developing or reviewing to enhance the capability and the profit to their personal online retailing company.

온라인 공간에서 비정상 정보 유포 기법의 시간에 따른 변화 분석 (Temporal Analysis of Opinion Manipulation Tactics in Online Communities)

  • 이시형
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.29-39
    • /
    • 2020
  • 인터넷 포털 사이트와 사회 관계망 서비스 등의 온라인 공간(online communities)은 시간과 공간의 제약 없이 접속 가능하다는 장점 때문에 많은 사용자들이 의견을 교환하고 정보를 얻기 위해 사용하고 있다. 이와 함께 특정 개인이나 집단의 이익을 위해 의도적으로 유포하는 비정상 정보도 증가하고 있는데 허위 상품 평이나 정치적 선동 의견이 이에 해당한다. 기존에는 이러한 비정상 정보 탐지를 위해 한 시점에서의 비정상 정보를 수집하고 특징을 분석하여 검열 시스템을 제안하였다. 그러나 비정상 정보를 유포하는 기법은 기존의 탐지 시스템을 회피하고 보다 효율적으로 정보를 전파하기 위해 지속적으로 변화하므로 탐지 시스템도 이에 맞추어 변화할 필요가 있다. 따라서 본 논문에서는 비정상 정보 유포 기법의 시간에 따른 변화를 관찰하는 시스템을 제시한다. 이 시스템은 클러스터링(clustering)을 활용해 비정상 정보를 유포 방식에 따라 군집(cluster)으로 분류하며 이러한 군집의 변화를 분석하여 유포 방식의 변화를 추적한다. 제안한 시스템을 검증하기 위해 3번의 선거 기간 전후에 포털 사이트에서 수집된 백만 개 이상의 의견을 대상으로 실험하였으며, 그 결과 비정상 정보 게재에 자주 사용되는 시간, 추천수 조작 방법, 다수의 ID 활용 방법 등에 대한 변화를 관찰할 수 있었다. 이 시스템을 주기적으로 사용해 탐지 시스템을 개선한다면 보다 빠르고 정확하게 비정상 정보의 유포를 탐지할 수 있을 것이다.

텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안 (Detecting Spam Data for Securing the Reliability of Text Analysis)

  • 현윤진;김남규
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.493-504
    • /
    • 2017
  • 최근 뉴스, 블로그, 소셜미디어 등을 통해 방대한 양의 비정형 텍스트 데이터가 쏟아져 나오고 있다. 이러한 비정형 텍스트 데이터는 풍부한 정보 및 의견을 거의 실시간으로 반영하고 있다는 측면에서 그 활용도가 매우 높아, 학계는 물론 산업계에서도 분석 수요가 증가하고 있다. 하지만 텍스트 데이터의 유용성이 증가함과 동시에 이러한 텍스트 데이터를 왜곡하여 특정 목적을 달성하려는 시도도 늘어나고 있다. 이러한 스팸성 텍스트 데이터의 증가는 방대한 정보 가운데 필요한 정보를 획득하는 일을 더욱 어렵게 만드는 것은 물론, 정보 자체 및 정보 제공 매체에 대한 신뢰도를 떨어뜨리는 현상을 초래하게 된다. 따라서 원본 데이터로부터 스팸성 데이터를 식별하여 제거함으로써, 정보의 신뢰성 및 분석 결과의 품질을 제고하기 위한 노력이 반드시 필요하다. 이러한 목적으로 스팸을 식별하기 위한 연구가 오피니언 스팸 탐지, 스팸 이메일 검출, 웹 스팸 탐지 등의 분야에서 매우 활발하게 수행되었다. 본 연구에서는 스팸 식별을 위한 기존의 연구 동향을 자세히 소개하고, 블로그 정보의 신뢰성 향상을 위한 방안 중 하나로 블로그의 스팸 태그를 식별하기 위한 방안을 제안한다.

트레이스 백 정보에 기반한 매크로 공격 탐지 모델 (A Macro Attacks Detection Model Based on Trace Back Information)

  • 백용진;홍석원;박재흥;강경원;김상복
    • 융합보안논문지
    • /
    • 제18권5_1호
    • /
    • pp.113-120
    • /
    • 2018
  • 오늘날 정보 통신 기술의 발전은 네트워크 기반의 서비스 사용자 수를 빠르게 증가시키고 있으며, 인터넷 상에서 사용자 상호간 실시간 정보 공유를 가능하도록 한다. 정보의 공유 과정에는 다양한 방법들이 존재하지만 일반적으로 포털서비스 기반의 정보 공유가 대중화 되어있다. 그렇지만 이러한 정보 공유 과정은 특정 이해 당사자 상호간 해당 정보의 사회적 관심도 증폭을 위한 불법 행위를 유발시키는 원인이 되고 있다. 그 중 매크로 기능을 이용한 여론 조작 공격은 정상적인 여론의 방향을 왜곡시키기 때문에 이에 대한 보안 대책이 시급한 실정이다. 일반적으로 매크로 공격이란 불법적인 사용자들이 다수의 IP나 아이디를 확보한 후 특정 웹 페이지의 내용에 대하여 여론을 조작하는 공격으로 정의한다. 본 논문은 특정 사용자의 매크로 공격에 대하여 트레이스 백 기반의 네트워크 경로 정보를 분석한 후 해당 사용자의 다중 접속을 탐지할 수 있도록 하였다. 즉, 특정 웹 페이지에 대한 전체적인 접근 경로 정보와 사용자 정보가 일치하는 접근이 2회 이상 발생하면 이를 매크로 공격으로 판정하였다. 또한 동일한 지역에서 특정 웹 페이지에 대하여 다수의 아이디를 이용한 접근이 발생하는 경우, 이에 대한 임계 카운트 값 분석을 통하여 특정 웹 페이지에 대한 전체적인 여론 결과를 왜곡 할 수 없도록 하였다.

  • PDF

온라인 공간에서 관심집단 대상 비정상 정보의 특징 분석과 탐지 (Characterization and Detection of Opinion Manipulation on Common Interest Groups in Online Communities)

  • 이시형
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.57-69
    • /
    • 2020
  • 인터넷 포털과 사회관계망 서비스(SNS) 등의 온라인 공간에서 사용자 간의 의견 공유가 활발해짐에 따라 이를 악용하여 특정 개인이나 집단의 이익을 위해 유포되는 비정상 정보도 증가하고 있다. 특히 비정상 정보가 정치적인 목적으로 유포되면 선거 결과뿐 아니라 다양한 사회 정책과 시민 생활에도 영향을 미친다. 이러한 비정상 정보는 불특정 다수에 대한 유포에서 시작하였으며 이들의 특성을 분석하고 탐지하기 위한 기존 연구도 이러한 불특정 다수 대상 유포에 초점을 맞추었다. 하지만 최근에는 더욱 효과적으로 영향을 미치기 위해 공통 관심사를 가진 집단(예: 부동산에 관심 있는 사람들의 모임)을 대상으로 내용과 형식을 조정한 맞춤형 정보를 유포하고 있다. 본 논문에서는 이러한 관심 집단을 대상으로 한 비정상 정보의 특성을 분석하고 이를 탐지하는 방법을 제시한다. 이를 위해 선거 전후에 10개의 공통 관심 집단에 게시된 의견을 수집하여 분석하였다. 그 결과, 각 집단에 맞춤화된 정보가 실제 유포되고 있으며 선거일이 가까워짐에 따라 점차 증가함을 보였다. 또한, 비정상 정보를 탐지하기 위한 시스템을 제안하였는데, 이 시스템은 개별 의견에서 보이는 특징뿐 아니라 의견 게시자의 전반적인 행위 및 게시자와 협력한 사용자의 특성을 종합적으로 분석한다. 제안한 시스템을 수집한 데이터에 적용한 결과 90% 이상의 정확도로 비정상 의견을 탐지하였으며 다수의 사용자가 조직적으로 비정상 의견을 유포한 정황을 발견하였다. 제안한 시스템으로 관심 집단에 게시된 의견을 주기적으로 검사한다면 비정상 정보의 유포를 더 빠르게 차단하고 영향을 줄일 수 있을 것이다. 또한, 탐지에 활용한 특징은 정치적인 목적 이외의 비정상 정보 판별에도 활용될 수 있을 것이다.