• Title/Summary/Keyword: Operator stability

Search Result 170, Processing Time 0.032 seconds

Study on the Empirical Awareness Analysis of Navigational Officers on the Evaluation of Ship Stability (선박 복원성 평가에 관한 항해사의 경험적 인지도 분석 연구)

  • Hong-Beom Kim;Young-Joong Ahn;Yun-Sok Lee;Chang-Hyun Jung;Gil-Young Kong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.325-331
    • /
    • 2023
  • The navigational officer's knowledge about securing stability, an essential factor for promoting the safe operation of ships, should be improved along with advancement in ship technology, such as the large-sized ships and the appearance of autonomous ships. Accordingly, this study conducted a survey on stability, targeting navigational officers, and analyzed empirical awareness using general characteristics. Navigational officers had a high level of understanding of the stability criteria for a higher rank, but lacked the understanding of the special criteria for specific ship types. Of the total respondents, 87.6% were using a loading computer to evaluate stability. The GM scored the highest (3.891/5.000 points) as a method of evaluating stability on the ship. Further, whether the stability was secured was determined based on the GM and stability criteria. Most navigational officers replenish additional ballast water to improve the stability and use a small angle of rudder in the case of lacking stability. The results of this study are intended to be used as important data for improving education and research on operator-centered stability in the future by evaluating the empirical awareness of navigational officers on the ship stability.

Load Test Simulator Development for Steam Turbine-Generator System of Nuclear Power Plant

  • Jeong, Chang-Ki;Kim, Jong-An;Kim, Byung-Chul;Choi, In-Kyu;Woo, Joo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1384-1386
    • /
    • 2005
  • This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.

  • PDF

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.

Optimal design and real application of nonlinear PID controllers (비선형 PID 제어기의 최적 설계및 실제 적용)

  • Lee, Moon-Yong;Koo, Doe-Gyoon;Lee, Jong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.639-643
    • /
    • 1997
  • This paper presents how nonlinear PID control algorithms can be applied on chemical processes for a more stable operation and perfect automation. A pass balance controller is designed to balance the exiting temperatures of a heater and a heat exchange network. The proposed controller has gain-varying integral action and deals with the operational constraints in an efficient manner. Also, the use of a PID gap controller is proposed to maximize energy saving and operation stability and to minimize operator intervention in operation of air fan coolers. The proposed controller adjusts the opening of a louver automatically in such a way that it keeps the air fan pitch position within the desired range. All these nonlinear PID controllers have been implemented on the distributed control system (DCS) for good reliability and operability. Operator acceptance was very high and the implemented controllers have shown good performance and high service factor still now on. The proposed methodology can be directly applied to similar processes without any modification.

  • PDF

Characteristics Analysis of Accident Factors of UK Civil Unmanned Aircraft Using SHELL Model and HFACS (SHELL 모델과 HFACS를 활용한 영국 민간 무인 항공기 사고 요인 특징 분석)

  • Do Yun Kim;Jo Won Chang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The unmanned aerial vehicle industry has developed a lot, but the possibility of accidents is increasing due to potential risks. In this study, SHELL models and HFACS were used to analyze unmanned aerial vehicle accidents in the UK and to identify the main causes and characteristics of accidents. The main cause analyzed by the SHELL model was identified as an abnormality in the alarm system. The main cause of the accident analyzed by HFACS was identified as the technical environment. The common cause identified by the SHELL model and HFACS was identified as a mechanical problem of unmanned aerial vehicles. This is due to the lack of accurate information or functionality of the alarm system in the operator interface, which often prevents the operator from responding to sensitive information. Therefore, in order to prevent civil UAV accidents, the stability and reliability of the system must be secured through regular inspections of the UAV system and continuous software updates. In addition, an ergonomic approach considering human interfaces is needed when developing technologies.

Congestion Management in Deregulated Power System by Optimal Choice and Allocation of FACTS Controllers Using Multi-Objective Genetic Algorithm

  • Reddy, S. Surender;Kumari, M. Sailaja;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.467-475
    • /
    • 2009
  • Congestion management is one of the technical challenges in power system deregulation. This paper presents single objective and multi-objective optimization approaches for optimal choice, location and size of Static Var Compensators (SVC) and Thyristor Controlled Series Capacitors (TCSC) in deregulated power system to improve branch loading (minimize congestion), improve voltage stability and reduce line losses. Though FACTS controllers offer many advantages, their installation cost is very high. Hence Independent System Operator (ISO) has to locate them optimally to satisfy a desired objective. This paper presents optimal location of FACTS controllers considering branch loading (BL), voltage stability (VS) and loss minimization (LM) as objectives at once using GA. It is observed that the locations that are most favorable with respect to one objective are not suitable locations with respect to other two objectives. Later these competing objectives are optimized simultaneously considering two and three objectives at a time using multi-objective Strength Pareto Evolutionary Algorithms (SPEA). The developed algorithms are tested on IEEE 30 bus system. Various cases like i) uniform line loading ii) line outage iii) bilateral and multilateral transactions between source and sink nodes have been considered to create congestion in the system. The developed algorithms show effective locations for all the cases considered for both single and multiobjective optimization studies.

Teaching Method Without Work Space Limit for Industrial Robot (산업용 로봇의 작업공간 제한이 없는 교시 방법)

  • Choi, Taeyong;Do, Hyunmin;Park, Chanhun;Park, Dongil;Kim, Doohyeong;Kyung, Jinho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.492-497
    • /
    • 2016
  • Teaching an industrial robot is still a dangerous and time-consuming process. It is expected that a robot can track a trajectory that is repeatedly taught by a human operator. Teaching a robot in joint space is easier than that in Cartesian space or a work space because the robot will never lose its stability when it is taught and operated in a joint space. However, it is very easy for a robot to lose its stability when it is taught in a work space. This is because of the singular points problem in kinematics for manipulators. Thus, experts should teach a given task to a robot in a careful manner. A new algorithm that avoids the problem of singular points is proposed. Using this proposed method, a user can freely teach a robot without the chance of instability in an entire work space.

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing

  • Verma, Mohit;Rajasankar, J.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1325-1348
    • /
    • 2015
  • Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical substructure that contains the key region of interest which is tested in a laboratory and numerical substructure that contains the remaining part of the structure in the form of a numerical model. This paper numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to evaluate the performance of the methods, five carefully chosen examples have been studied - undamped SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The performance of the methods is measured in terms of a non-dimensional error index for displacement and velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in case of hysteretic system. The accuracy of the results obtained through time integration methods for different damping ratios of the physical substructure is addressed in the present study. In the presence of a number of integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four commonly used step-by-step methods.

A Study on the Design of System Access Control Software For the Improvement of the Stability and Survivability of Naval Combat Management System

  • Jong-Hyeon Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.137-145
    • /
    • 2023
  • In this paper, we propose system access control software that improves the survivability of the naval combat system while maintaining security and stability. The software was improved by improving the operating environment configuration and user authentication process of the system access control software that constitutes the naval combat system, defining the operating environment classification of the naval combat system, and applying a software parallel execution process considering the load rate. Through this, the waiting time required to configure the environment is shortened, providing rapid operation to the operator, and improving the fact that the naval combat system cannot be operated unless the environment configuration is completed even in emergency situations. In order to test the performance, a test environment was created by simulating the existing naval combat system, and the execution time for each operation category was measured and compared. Compared to the existing naval combat system, the execution time of the basic combat system was reduced by about 69.3%, the execution time of the combat system was reduced by about 54.9%, and the execution time of the integrated combat system was confirmed to be reduced by about 8.4%.