• Title/Summary/Keyword: Operator safety

Search Result 523, Processing Time 0.023 seconds

Method for Inference of Operators' Thoughts from Eye Movement Data in Nuclear Power Plants

  • Ha, Jun Su;Byon, Young-Ji;Baek, Joonsang;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.129-143
    • /
    • 2016
  • Sometimes, we need or try to figure out somebody's thoughts from his or her behaviors such as eye movement, facial expression, gestures, and motions. In safety-critical and complex systems such as nuclear power plants, the inference of operators' thoughts (understanding or diagnosis of a current situation) might provide a lot of opportunities for useful applications, such as development of an improved operator training program, a new type of operator support system, and human performance measures for human factor validation. In this experimental study, a novel method for inference of an operator's thoughts from his or her eye movement data is proposed and evaluated with a nuclear power plant simulator. In the experiments, about 80% of operators' thoughts can be inferred correctly using the proposed method.

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.

On the Development of Requirements and Test and Evaluation Procedure for Improving the Work Environment of Locomotive Cabs (철도차량 운전실의 작업환경 개선을 위한 요건관리 및 시험평가 방안에 관한 연구)

  • Kim, Young Min;Park, Chan Woo;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.63-72
    • /
    • 2013
  • Recent trends in rail industry can be characterized by the multifunctionality and very high-speed modes of operations. In particular, the adoption of the unmaned or operatorless operations has been getting increased attention in which case ensuring systems safety is crucial. On the other hand, according to the result of analyzing rail accidents, the human/operator errors have turned out to be one of the key causes of the accidents. Therefore, the effort of improving the work environment of locomotive cabs is quite necessary in order to decrease the accidents. The objective of this paper is studying on how to incorporate the factors related to the train operators in the design of the locomotive cabs and also on how to evaluate the design results obtained, which is subsequently reflected in the generation of the test and evaluation procedure. The approach taken is based on systems engineering, yielding the procedure document as a result. The results obtained in the paper can be useful in confirming the design of locomotive cabs utilizing the domestic human/operator measure. Also, the way of achieving the objectives can be utilized to cover the expanded rail systems development with appropriate design activities added.

A Case Study on Designing a Console Design Review System Considering Operators' Viewing Range and Anthropometric Data

  • Cha, Woo Chang;Choi, Eun Gyeong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.373-383
    • /
    • 2017
  • Objective: The aim of this study is to introduce an operator console design review system suitable for designing and evaluating consoles based on human factor guidelines for a digitalized main control room in an advanced nuclear power plant which has a requirement for anthropometric data usage. Background: The system interface of the main control room in a nuclear power plant has been getting digitalized and consists of various consoles with many information displays. Console operators often face human-computer interactive problems due to inappropriate console design stemming from the perceptual constraints of anthropometric data usage. Method: Computational models with a process of visual perception and variables of anthropometric data are used for designing and evaluating operator consoles suitable for human system interface guidelines, which are used in an advanced nuclear power plant. Results: From the computational model and simulation application, console dimensions and a designing test module, which would be used for designing suitable consoles with safety concerns in a nuclear power plant, have been introduced. Conclusion: This case study may influence employing a suitable design concept with various anthropometric data in many areas with safety concerns and may show a feasible solution to designing and evaluating the safety console dimensions. Application: The results of this study may be used for designing a control room with the human factors requiring a safe working environment.

Method for High-visibility of Online Monitoring and Fault Diagnosis System for Industrial Motor using PVA (PVA를 이용한 산업용 모터 고장진단 모니터링 시스템의 가시성을 높이는 방법)

  • Goh, Yeong-Jin;Kang, In-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial Motors diagnostic equipment is highly dependent on the automation system, so if there are defects in the automation equipment, it can only rely on the operator's intuitive judgment.To help with intuitive judgment, Park's Vactor Approach(PVA) represents the current signal as a pattern of circles, so it can tell if a fault occurs when the circle is distorted. However, the failure to judge the degree of distortion of the circle pattern is the basis of the fault, so it will face difficulties. In this paper, in order to compare the faults of PVA, the period of d-axis current of PVA pulsation was mastered, so that two phase differences occurred in the same signal source. Through experiments, it is confirmed that this is a 90 degree cross formation of PVA, which is convenient for judging from the vision that there is no fault, thus helping the operator to make intuitive judgment.

Measurement and Modeling of Job Stress of Electric Overhead Traveling Crane Operators

  • Krishna, Obilisetty B.;Maiti, Jhareswar;Ray, Pradip K.;Samanta, Biswajit;Mandal, Saptarshi;Sarkar, Sobhan
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.279-288
    • /
    • 2015
  • Background: In this study, the measurement of job stress of electric overhead traveling crane operators and quantification of the effects of operator and workplace characteristics on job stress were assessed. Methods: Job stress was measured on five subscales: employee empowerment, role overload, role ambiguity, rule violation, and job hazard. The characteristics of the operators that were studied were age, experience, body weight, and body height. The workplace characteristics considered were hours of exposure, cabin type, cabin feature, and crane height. The proposed methodology included administration of a questionnaire survey to 76 electric overhead traveling crane operators followed by analysis using analysis of variance and a classification and regression tree. Results: The key findings were: (1) the five subscales can be used to measure job stress; (2) employee empowerment was the most significant factor followed by the role overload; (3) workplace characteristics contributed more towards job stress than operator's characteristics; and (4) of the workplace characteristics, crane height was the major contributor. Conclusion: The issues related to crane height and cabin feature can be fixed by providing engineering or foolproof solutions than relying on interventions related to the demographic factors.

Whole-Body Vibration Exposure vis-à-vis Musculoskeletal Health Risk of Dumper Operators Compared to a Control Group in Coal Mines

  • Kumar, Vivekanand;Palei, Sanjay K.;Karmakar, Netai C.;Chaudhary, Dhanjee K.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.73-77
    • /
    • 2022
  • Background: Whole-body vibration (WBV) exposure of coal mine dumper operators poses numerous health hazards. The case-control study was aimed at assessing the relative musculoskeletal health risk of dumper operators' exposure to WBV with reference to the nonexposed group. Methods: Measurements of WBV exposure were taken at the operator-seat interface using a human vibration analyzer for 110 dumper operators in three coal mines. This vibration measurement was supplemented by a questionnaire survey of 110 dumper operators exposed to WBV and an equal number of workers not exposed to WBV. The relative risk of musculoskeletal disorders (MSDs) has been assessed through the case-control study design. Results: ISO guidelines were used to compare the health risk. It was observed that the prevalence of pain in the lower back was 2.52 times more in the case group compared to the control group. The case group of Mine-2 was 2.0 times more prone to vibration hazards as compared to Mine-3. Conclusion: The case group is more vulnerable to MSDs than the control group. The on-site measurement as well as the response of the dumper operators during the questionnaire survey corroborates this finding.

Reduction Plan for nip accidents by a Roller Machine (산업용 로울러기의 협착재해 감소방안)

  • 박재범;강동규;김두현
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2003
  • The roller machines installed in the industrial field are operated under hazardous conditions due to no safety devices available, human error during operation, defective safety devices, and inadequate regulation even in case that safety devices are provided. Up to now, most roller machines installed in domestic field are provides with band breaking system as a safety device. In this study, the emergency stop distance is measured within the limit of domestic regulation but violates a foreign regulation(EN1417). Consequently, it is concluded that the roller machines with a band breaking system have high possibility of death or serious injury of the operator and the system should be improved with the introduction of additional safety devices. This thesis suggests the safety measures suitable for the roller machines with different drive systems based on the experiment results. The use of the newly developed safety system has been tested on many cases.

Development of Advanced Annunciator System for Nuclear Power Plants

  • Hong, Jin-Hyuk;Park, Seong-Soo;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • Conventional alarm system has many difficulties in the operator's identifying the plant status during special situations such as design basis accidents. To solve the shortcomings, an on-line alarm annunciator system, called dynamic alarm console (DAC), was developed. In the DAC, a signal is generated as alarm by the use of an adaptive setpoint check strategy based on operating mode, and time delay technique is used not to generate nuisance alarms. After alarm generation, if activated alarm is a level precursor alarm or a consequencial alarm, it would be suppressed, and the residual alarms go through dynamic prioritization which provide the alarms with pertinent priorities to the current operating mode. Dynamic prioritization is achieved by going through the system- and mode-oriented prioritization. The DAC has the alarm hierarchical structure based on the physical and functional importance of alarms. Therefore the operator can perceive alarm impacts on the safety or performance of the plant with the alarm propagation from equipment level to plant functional level. In order to provide the operator with the most possible cause of the event and quick cognition of the plant status even without recognizing the individual alarms, reactor trip status tree (RTST) was developed. The DAC and the RTST have been simulated with on-line data obtained from the full-scope simulator for several abnormal cases. The results indicated that the system can provide the operator with useful and compact information fur the earlier termination and mitigation of an abnormal state.

  • PDF

Analysis of interface management tasks in a digital main control room

  • Choi, Jeonghun;Kim, Hyoungju;Jung, Wondea;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1554-1560
    • /
    • 2019
  • Development of digital main control rooms (MCRs) has greatly changed operating environments by altering operator tasks, and thus the unique characteristics of digital MCRs should be considered in terms of human reliability analysis. Digital MCR tasks can be divided into primary tasks that directly supply control input to the plant equipment, and secondary tasks that include interface management conducted via soft controls (SCs). Operator performance regarding these secondary tasks must be evaluated since such tasks did not exist in previous analog systems. In this paper, we analyzed SC-related tasks based on simulation data, and classified the error modes of the SCs following analysis of all operational tasks. Then, we defined the factors to be considered in human reliability analysis methods regarding the SCs; such factors are mainly related to interface management and computerized operator support systems. As these support systems function to reduce the number of secondary tasks required for SC, we conducted an assessment to evaluate the efficiency of one such support system. The results of this study may facilitate the development of training programs as well as help to optimize interface design to better reflect the interface management task characteristics of digitalized MCRs.