• 제목/요약/키워드: Operator allowable time

검색결과 6건 처리시간 0.025초

RCD success criteria estimation based on allowable coping time

  • Ham, Jaehyun;Cho, Jaehyun;Kim, Jaewhan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.402-409
    • /
    • 2019
  • When a loss of coolant accident (LOCA) occurs in a nuclear power plant, accident scenarios which can prevent core damage are defined based on break size. Current probabilistic safety assessment evaluates that core damage can be prevented under small-break LOCA (SBLOCA) and steam generator tube rupture (SGTR) with rapid cool down (RCD) strategy when all safety injection systems are unavailable. However, previous research has pointed out a limitation of RCD in terms of initiation time. Therefore, RCD success criteria estimation based on allowable coping time under a SBLOCA or SGTR when all safety injection systems are unavailable was performed based on time-line and thermal-hydraulic analyses. The time line analysis assumed a single emergency operating procedure flow, and the thermal hydraulic analysis utilized MARS-KS code with variables of break size, cooling rate, and operator allowable time. Results show while RCD is possible under SGTR, it is impossible under SBLOCA at the APR1400's current cooling rate limitation of 55 K/hr. A success criteria map for RCD under SBLOCA is suggested without cooling rate limitation.

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

서비스 납기가 주어진 다목적차량일정문제를 위한 혼성유전알고리듬의 개발 (A Hybrid Genetic Algorithm for the Multiobjective Vehicle Scheduling Problems with Service Due Times)

    • 한국경영과학회지
    • /
    • 제24권2호
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, I propose a hybrid genetic algorithm(HGAM) incorporating a greedy interchange local optimization procedure for the multiobjective vehicle scheduling problems with service due times where three conflicting objectives of the minimization of total vehicle travel time, total weighted tardiness, and fleet size are explicitly treated. The vehicle is allowed to visit a node exceeding its due time with a penalty, but within the latest allowable time. The HGAM applies a mixed farming and migration strategy in the evolution process. The strategy splits the population into sub-populations, all of them evolving independently, and applys a local optimization procedure periodically to some best entities in sub-populations which are then substituted by the newly improved solutions. A solution of the HCAM is represented by a diploid structure. The HGAM uses a molified PMX operator for crossover and new types of mutation operator. The performance of the HGAM is extensively evaluated using the Solomons test problems. The results show that the HGAM attains better solutions than the BC-saving algorithm, but with a much longer computation time.

  • PDF

이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법 (Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit)

  • 양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.

수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구 (A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station)

  • 이장원;김창수
    • 한국재난정보학회 논문집
    • /
    • 제18권3호
    • /
    • pp.520-531
    • /
    • 2022
  • 연구목적: 본 연구는 수소충전소의 위험성 평가를 바탕으로, 운영주의 주요 관심 사항인 수익성과 경영 위험성을 고찰함으로써 경영안전성 강화를 위한 방안을 찾고자 한다. 연구방법: 위험성 평가를 수소충전소의 설치단계부터 시간의 흐름에 따라 '수용 가능한 위험성'과 '허용 가능한 위험성'으로 구분하여 기존의 연구결과와 비교, 분석하였다. 연구결과: 수소충전소 설치단계에 실행하는 위험성 평가는 현재 기존의 연구가 적절하게 적용되고 있었다. 그러나 운영단계에서 발생 가능한 위험을 찾을 수 있었다. 즉 경영위험성에 대한 평가도 필요함을 도출하였다. 그리고 이를 통해 수소충전소의 안전성이 강화됨을 확인했다. 결론: 수소충전소 설치단계에 선행되는 위험성평가는 '수용 가능한 위험성' 평가로 모두 유의미한 결과가 도출되어 적절하게 활용되고 있다. 그러나 운영주는 운영단계에서 발생 가능한 위험, 즉 '허용 가능한 위험성' 평가와 대응방안 마련이 필요하다. 따라서 보다 안전한 수소충전소 구축과 운영을 위하여 경영위험성 평가 항목 추가를 제안한다.

다품종 소량생산 설비의 총괄생산계획에 관한 사례 연구: 시스템다이내믹스 시뮬레이션 모델링을 중심으로 (A Case Study on the Aggregate Planning of Multi-product Small-batch Production Facilities: Focusing on System Dynamics Simulation Modeling)

  • 이승도;김상원
    • 품질경영학회지
    • /
    • 제50권1호
    • /
    • pp.153-167
    • /
    • 2022
  • Purpose: The purpose of this study is to guide the operation managers who plan daily production of large mass-processing facility that services multi-customers with multi-product, small-batch item characteristics by providing the practical best production quantity and the inventory allowed to build. Methods: Close observation of a subcontract paint-shop operator captured the daily decision process which was reflected in the subcontractor-unique mathematical model and the system dynamics simulation model. Multiple simulations were run to find the practical best production quantity and the maximum allowable stock level of inventory that did not undermine the profit from practical best daily production. Actual data and a few constant values were obtained from the firm under study. Results: While the inventory holding cost for the customer-owned material harms the total profit of the subcontractor, the running cost of the processing facility hinders production in small batches. This balances the maximum possible productions and results in practical best daily production which can be found through simulation runs with actual data. The maximum level of stocked inventory is deduced from the practical best daily production. Conclusion: To build a large volume that enables economy-of-scale production, operators should deal with multi-product small-batch items from multiple customers. When the planned schedule of the time and amount of material in-flow tend not to be reliable, operators can find it practical to execute level production across the planning horizon instead of adjusting to day-to-day in-flow fluctuations.