• Title/Summary/Keyword: Operator allowable time

Search Result 6, Processing Time 0.022 seconds

RCD success criteria estimation based on allowable coping time

  • Ham, Jaehyun;Cho, Jaehyun;Kim, Jaewhan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.402-409
    • /
    • 2019
  • When a loss of coolant accident (LOCA) occurs in a nuclear power plant, accident scenarios which can prevent core damage are defined based on break size. Current probabilistic safety assessment evaluates that core damage can be prevented under small-break LOCA (SBLOCA) and steam generator tube rupture (SGTR) with rapid cool down (RCD) strategy when all safety injection systems are unavailable. However, previous research has pointed out a limitation of RCD in terms of initiation time. Therefore, RCD success criteria estimation based on allowable coping time under a SBLOCA or SGTR when all safety injection systems are unavailable was performed based on time-line and thermal-hydraulic analyses. The time line analysis assumed a single emergency operating procedure flow, and the thermal hydraulic analysis utilized MARS-KS code with variables of break size, cooling rate, and operator allowable time. Results show while RCD is possible under SGTR, it is impossible under SBLOCA at the APR1400's current cooling rate limitation of 55 K/hr. A success criteria map for RCD under SBLOCA is suggested without cooling rate limitation.

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

A Hybrid Genetic Algorithm for the Multiobjective Vehicle Scheduling Problems with Service Due Times (서비스 납기가 주어진 다목적차량일정문제를 위한 혼성유전알고리듬의 개발)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, I propose a hybrid genetic algorithm(HGAM) incorporating a greedy interchange local optimization procedure for the multiobjective vehicle scheduling problems with service due times where three conflicting objectives of the minimization of total vehicle travel time, total weighted tardiness, and fleet size are explicitly treated. The vehicle is allowed to visit a node exceeding its due time with a penalty, but within the latest allowable time. The HGAM applies a mixed farming and migration strategy in the evolution process. The strategy splits the population into sub-populations, all of them evolving independently, and applys a local optimization procedure periodically to some best entities in sub-populations which are then substituted by the newly improved solutions. A solution of the HCAM is represented by a diploid structure. The HGAM uses a molified PMX operator for crossover and new types of mutation operator. The performance of the HGAM is extensively evaluated using the Solomons test problems. The results show that the HGAM attains better solutions than the BC-saving algorithm, but with a much longer computation time.

  • PDF

Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit (이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법)

  • Yang, Gil Jin;Choi, Byoung Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.

A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station (수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구)

  • Lee, Jang Won;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.520-531
    • /
    • 2022
  • Purpose: Based on the risk evaluation of hydrogen fueling stations, this study aims to find a plan to strengthen management safety by examining profitability and management risk, which are major concerns of employers. Method: The risk evaluation was divided into 'acceptable risk' and 'allowable risk' over time from the stage of installation of hydrogen fueling stations, and compared and analyzed with the results of existing studies. Result: Existing studies have been appropriately applied to the risk assessment performed at the stage of installing hydrogen fueling stations. However, possible risks could be found at the operational stage. In other words, it was derived that an evaluation of management risk was also necessary. And through this, it was confirmed that the safety of hydrogen fueling stations was strengthened. Conclusion: The risk assessment that precedes the stage of installing hydrogen fueling stations is appropriate because significant results have been derived from the 'acceptable risk' assessment. However, the operator needs to evaluate the risks that may occur at the operating stage, that is, the 'allowable risks' and prepare countermeasures. Therefore, it is proposed to add management risk assessment items to build and operate safer hydrogen fueling stations.

A Case Study on the Aggregate Planning of Multi-product Small-batch Production Facilities: Focusing on System Dynamics Simulation Modeling (다품종 소량생산 설비의 총괄생산계획에 관한 사례 연구: 시스템다이내믹스 시뮬레이션 모델링을 중심으로)

  • Lee, Seungdoe;Kim, Sang Won
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.153-167
    • /
    • 2022
  • Purpose: The purpose of this study is to guide the operation managers who plan daily production of large mass-processing facility that services multi-customers with multi-product, small-batch item characteristics by providing the practical best production quantity and the inventory allowed to build. Methods: Close observation of a subcontract paint-shop operator captured the daily decision process which was reflected in the subcontractor-unique mathematical model and the system dynamics simulation model. Multiple simulations were run to find the practical best production quantity and the maximum allowable stock level of inventory that did not undermine the profit from practical best daily production. Actual data and a few constant values were obtained from the firm under study. Results: While the inventory holding cost for the customer-owned material harms the total profit of the subcontractor, the running cost of the processing facility hinders production in small batches. This balances the maximum possible productions and results in practical best daily production which can be found through simulation runs with actual data. The maximum level of stocked inventory is deduced from the practical best daily production. Conclusion: To build a large volume that enables economy-of-scale production, operators should deal with multi-product small-batch items from multiple customers. When the planned schedule of the time and amount of material in-flow tend not to be reliable, operators can find it practical to execute level production across the planning horizon instead of adjusting to day-to-day in-flow fluctuations.