• Title/Summary/Keyword: Operator Performance

Search Result 776, Processing Time 0.029 seconds

Development of Feed Controller Using Synchronization Algorithm (동기화 알고리즘을 이용한 피드컨트롤러 개발)

  • Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.162-166
    • /
    • 2018
  • Companies that use automatic feeder systems use multiple feeders in close proximity to each other for mass production. Unlike when the feeder is used independently, it does not oscillate to a value that is set to offset or freeze due to symbiosis caused by asynchronous forces hitting each other. This may result in the shipment being damaged by hitting each other or thrown to one side, preventing the transport from being moved to the next process. Whenever an unstable resonance occurs, the operator must reset the value of each feed controller or operate it several times. To address these problems, this paper proposes synchronization algorithm suitable for feed controllers using multiple units and tests are used to confirm performance improvements.

Current status of the anterior middle superior alveolar anesthetic injection for periodontal procedures in the maxilla

  • Ahad, Abdul;Haque, Ekramul;Tandon, Shruti
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Periodontal procedures require adequate anesthesia not only to ensure the patient's comfort but also to enhance the operator's performance and minimize chair time. In the maxilla, anesthesia is often achieved using highly traumatic nerve blocks, apart from multiple local infiltrations through the buccal vestibule. In recent years, anterior middle superior alveolar (AMSA) field block has been claimed to be a less traumatic alternative to several of these conventional injections, and it has many other advantages. This critical review of the existing literature aimed to discuss the rationale, mechanism, effectiveness, extent, and duration of AMSA injections for periodontal surgical and non-surgical procedures in the maxilla. It also focused on future prospects, particularly in relation to computer-controlled local anesthetic delivery systems, which aim to achieve the goal of pain-free anesthesia. A literature search of different databases was performed to retrieve relevant articles related to AMSA injections. After analyzing the existing data, it can be concluded that this anesthetic technique may be used as a predictable method of effective palatal anesthesia with adequate duration for different periodontal procedures. It has additional advantages of being less traumatic, requiring lesser amounts of local anesthetics and vasoconstrictors, as well as achieving good hemostasis. However, its effect on the buccal periodontium appears highly unpredictable.

Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit (듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발)

  • Won, Chang-Yeon;Kang, Seon-Mo;Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

Application of Chernoff bound to passive system reliability evaluation for probabilistic safety assessment of nuclear power plants

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2915-2923
    • /
    • 2022
  • There is an increasing interest in passive safety systems to minimize the need for operator intervention or external power sources in nuclear power plants. Because a passive system has a weak driving force, there is greater uncertainty in the performance compared with an active system. In previous studies, several methods have been suggested to evaluate passive system reliability, and many of them estimated the failure probability using thermal-hydraulic analyses and the Monte Carlo method. However, if the functional failure of a passive system is rare, it is difficult to estimate the failure probability using conventional methods owing to their high computational time. In this paper, a procedure for the application of the Chernoff bound to the evaluation of passive system reliability is proposed. A feasibility study of the procedure was conducted on a passive decay heat removal system of a micro modular reactor in its conceptual design phase, and it was demonstrated that the passive system reliability can be evaluated without performing a large number of thermal-hydraulic analyses or Monte Carlo simulations when the system has a small failure probability. Accordingly, the advantages and constraints of applying the Chernoff bound for passive system reliability evaluation are discussed in this paper.

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

3-Finger Robotic Hand and Hand Posture Mapping Algorithm for Avatar Robot (아바타 로봇을 위한 3지 로봇 손과 손 자세 맵핑 알고리즘)

  • Kim, Seungyeon;Sung, Eunho;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.322-333
    • /
    • 2022
  • The Avatar robot, which is one of the teleoperation robots, aims to enable users to feel the robot as a part of the body to intuitively and naturally perform various tasks. Considering the purpose of the avatar robot, an end-effector identical to a human hand is advantageous, but a robotic hand with human hand level performance has not yet been developed. In this paper we propose a new 3-finger robotic hand with human-avatar hand posture mapping algorithm which were integrated with TOCABI-AVATAR, one of the teleoperation system. Due to the flexible rolling contact joints and tendon driven mechanism applied to the finger, the finger could implement adaptive grasping and absorb the impact force caused by unexpected contacts. In addition, human-avatar hand mapping algorithm using five calibration hand postures propose to compensate physical differences between operators. Using the TOCABI-AVATAR system with the robotic hands and mapping algorithm, the operator can perform 13 out of 16 hand postures of grasping taxonomy and 4 gestures. In addition, using the system, we participated in the ANA AVATAR XPRIZE Semi-final and successfully performed three scenarios which including various social interactions as well as object manipulation.

Drought forecasting over South Korea based on the teleconnected global climate variables

  • Taesam Lee;Yejin Kong;Sejeong Lee;Taegyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.47-47
    • /
    • 2023
  • Drought occurs due to lack of water resources over an extended period and its intensity has been magnified globally by climate change. In recent years, drought over South Korea has also been intensed, and the prediction was inevitable for the water resource management and water industry. Therefore, drought forecasting over South Korea was performed in the current study with the following procedure. First, accumulated spring precipitation(ASP) driven by the 93 weather stations in South Korea was taken with their median. Then, correlation analysis was followed between ASP and Df4m, the differences of two pair of the global winter MSLP. The 37 Df4m variables with high correlations over 0.55 was chosen and sorted into three regions. The selected Df4m variables in the same region showed high similarity, leading the multicollinearity problem. To avoid this problem, a model that performs variable selection and model fitting at once, least absolute shrinkage and selection operator(LASSO) was applied. The LASSO model selected 5 variables which showed a good agreement of the predicted with the observed value, R2=0.72. Other models such as multiple linear regression model and ElasticNet were also performed, but did not present a performance as good as LASSO. Therefore, LASSO model can be an appropriate model to forecast spring drought over South Korea and can be used to mange water resources efficiently.

  • PDF

OPERATION SKILL ANALYSIS USING PRIMITIVE STATIC STATES IN HUMAN-OPEATED WORK MACHINE

  • Mitsuhiro Kamezaki;Hiroyasu Iwata;Shigeki Sugano
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.230-236
    • /
    • 2009
  • Double-front construction machinery, which was designed for complicated tasks, requires intelligent systems that can provide the quantitative work analysis needed to determine effective work procedures and that can provide operational and cognitive support for operators. Construction work environments are extremely complicated, however, and this makes state identification difficult. We therefore defined primitive static states (PSS) that are determined using on-off data for the lever inputs and manipulator loads for each part of the grapple and front and that are completely independent of the various environmental conditions and operator skill levels. To confirm the usefulness of PSS, we performed experiments with a demolition task by using our virtual reality simulator. We confirmed that PSS could robustly and accurately identify the work states and that untrained skills could be easily inferred from the PSS-based work analysis. We also confirmed in skill-training experiments that advice information using PSS-based skill analysis greatly improved work performance. We thus confirmed that PSS can adequately identify work states and are useful for work analysis and skill improvement.

  • PDF

Automatic detection system for surface defects of home appliances based on machine vision (머신비전 기반의 가전제품 표면결함 자동검출 시스템)

  • Lee, HyunJun;Jeong, HeeJa;Lee, JangGoon;Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.47-55
    • /
    • 2022
  • Quality control in the smart factory manufacturing process is an important factor. Currently, quality inspection of home appliance manufacturing parts produced by the mold process is mostly performed with the naked eye of the operator, resulting in a high error rate of inspection. In order to improve the quality competition, an automatic defect detection system was designed and implemented. The proposed system acquires an image by photographing an object with a high-performance scan camera at a specific location, and reads defective products due to scratches, dents, and foreign substances according to the vision inspection algorithm. In this study, the depth-based branch decision algorithm (DBD) was developed to increase the recognition rate of defects due to scratches, and the accuracy was improved.

Efficient Task-Resource Matchmaking Technique for Multiple/Heterogeneous Unmanned Combat Systems (다중/이종 무인전투체계를 위한 효율적 과업-자원 할당 기법)

  • Young-il Lee;Hee-young Kim;Wonik Park;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • In the future battlefield centered on the concept of mosaic warfare, the need for an unmanned combat system will increase to value human life. It is necessary for Multiple/Heterogeneous Unmanned Combat Systems to have suitable mission planning method in order to perform various mission. In this paper, we propose the MTSR model for mission planning of the unmanned combat system, and introduce a method of identifying a task by a combination of services using a request operator and a method of allocating resources to perform a task using the requested service. In order to verify the performance of the proposed task-resource matchmaking algorithm, simulation using occupation scenarios is performed and the results are analyzed.