• Title/Summary/Keyword: Operator Performance

Search Result 764, Processing Time 0.029 seconds

Comparison of Display Visual Effects in Control Task under Limited Reaction Time (반응시간제한시 제어작업의 디스플레이 시각효과 비교)

  • 오영진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.57-68
    • /
    • 1998
  • Work environments have been changed with the advent of new technologies, such as computer technology. However, human cognitive limits can't pace up with the change of work environment. Designing human-computer system requires knowledge and evaluation of the human cognitive processes which control information flow workload. Futhermore, under limited reaction time and/or urgent situation, human operator may the work stress, work error and resultant deleterious work environment. This paper evaluate the visual factors of major information processing factors(information density, amount of information, operational speed of speed)on operator performance of supervisory control under urgent(limited reaction time)environments which require deleterious work condition. To describe the work performance int the urgent work situations with time stress and dynamic event occurrence, a new concept of information density was introduced. For a series of experiments performed for this study, three independent variables(information amount, system proceeding speed, information density) were evaluated using five dependent variables. The result of statistical analyses indicate that the amount of information affected on all of five dependent measure. Number of failure and number of secondary task score were influenced by both amount of information and operational speed of system. However reaction time of secondary task were affected by both amount of information and information density. As a result, the deleterious factors for the performances seemed to be a scanning time to supervise each control panel. Consequently, a new display panel was suggest to reduce operator work load for scanning task showing better operator performance.

  • PDF

A New Connected Operator Using Morphological Reconstruction for Region-Based Coding (영역 기반 부호화를 위한 새로운 수리형태학 기반의 Connected Operator)

  • Kim, Tae-Hyeon;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In this paper, we propose a new connected operator Using morphological grayscale reconstruction for region-based coding First, an effective method of reference-image creation lis proposed, which is based on the Size as well as the contrast. This improves the performance of simplification, because It preserves perceptually important components and removes unnecessary components The conventional connected operators are good for removing small regions, but have a serious drawback for low-contrast regions that are larger than the structuring element. That is, when the conventional connected operators are applied to tills region, the simplification becomes less effective or several meaningful regions are merged to one region to avoid this, the conventional geodesic dilation is modified to propose an adaptive operator to reduce the effect of inappropriate propagation, pixels reconstructed to the original values are excluded m the dilation operation Experimental results have shown that the proposed algorithm achieves better performance In terms of the reconstruction of flat zones. The Picture quality has also been improved by about 7dB, compared to the conventional methods.

  • PDF

Dynamic Resource Adjustment Operator Based on Autoscaling for Improving Distributed Training Job Performance on Kubernetes (쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터)

  • Jeong, Jinwon;Yu, Heonchang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.205-216
    • /
    • 2022
  • One of the many tools used for distributed deep learning training is Kubeflow, which runs on Kubernetes, a container orchestration tool. TensorFlow jobs can be managed using the existing operator provided by Kubeflow. However, when considering the distributed deep learning training jobs based on the parameter server architecture, the scheduling policy used by the existing operator does not consider the task affinity of the distributed training job and does not provide the ability to dynamically allocate or release resources. This can lead to long job completion time and low resource utilization rate. Therefore, in this paper we proposes a new operator that efficiently schedules distributed deep learning training jobs to minimize the job completion time and increase resource utilization rate. We implemented the new operator by modifying the existing operator and conducted experiments to evaluate its performance. The experiment results showed that our scheduling policy improved the average job completion time reduction rate of up to 84% and average CPU utilization increase rate of up to 92%.

Fuzzy control by identification of fuzzy model of dynamic systems (다이나믹시스템의 퍼지모델 식별을 통한 퍼지제어)

  • 전기준;이평기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.127-130
    • /
    • 1990
  • The fuzzy logic controller which can be applied to various industrial processes is quite often dependent on the heuristics of the experienced operator. The operator's knowledge is often uncertain. Therefore an incorrect control rule on the basis of the operator's information is a cause of bad performance of the system. This paper proposes a new self-learning fuzzy control method by the fuzzy system identification using the data pairs of input and output and arbitrary initial relation matrix. The position control of a DC servo motor model is simulated to verify the effectiveness of the proposed algorithm.

  • PDF

Man-machine control system analysis (Man-Machine 제어시스템 분석)

  • 이상훈;최중락;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.394-397
    • /
    • 1987
  • This paper presents an analysis of the man-machine control system. A man-machine system depends on the performance of a human operator for proper operation. The analysis method is based upon the assumption that human operator will act in a near optimal controller. Optimal control theory and its associated state space representation is used as the basis for the analytic procedure. The computer simulation for a given plant shows that plant parameters have limited range by the human operator.

  • PDF

PERFORMANCE OF Gℓ-PCG METHOD FOR IMAGE DENOISING PROBLEMS

  • YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.399-411
    • /
    • 2017
  • We first provide the linear operator equations corresponding to the Tikhonov regularization image denoising problems with different regularization terms, and then we propose how to choose Kronecker product preconditioners which are required for accelerating the $G{\ell}$-PCG method. Next, we provide how to apply the $G{\ell}$-PCG method with Kronecker product preconditioner to the linear operator equations. Lastly, we provide numerical experiments for image denoisng problems to evaluate the effectiveness of the $G{\ell}$-PCG with Kronecker product preconditioner.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Digital PID controller design adopting the delta transforms ($\delta$ 변환을 채택한 디지틀 PID 제어기 설계)

  • 김인중;홍석민;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.981-986
    • /
    • 1992
  • In order to implement the digital PID control algorithm, it is necessary to consider the effect of the finite word length(FWL). In this paper, we show the FWL effect in the digital PID controllers. The conception analyse the effects of the signal quantization error in the digital PID algorithm and the coefficient wordlength determined from performance criteria with the statistical wordlength concept. Throughout this paper, it is dealt with the type of controller structure based delta operator the delta operator has such advantages are superior rounfoff noise perfoff noise performance, more accurate coefficient repersentation, and less sensitive control law.

  • PDF

Design of auto-depth control system for submerged body (수증운동체 자동심도제어 시스템 설계연구)

  • 이동익;윤형식;최중락;양승윤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.481-484
    • /
    • 1990
  • Normal operation when deeply submerged is a relatively easy task, and human operator control can often provide adequate performance. Near surface depthkeeping, on the other hand, is difficult to both man and machine. Because of the inherent limitation of the human operator, manual control may prove inadequate for near surface depthkeeping in some sea state. This paper describe the control algorithm of an automatic depth control system for submerged body that can be used for both near surface and deeply submerged depthkeeping operations. The computer simulations demonstrate the excellent depthkeeping performance of the controller under seaway effects.

  • PDF

Task performance under three visual feedback conditions in a teleoperation task (원격 조종 작업에서 3가지 시각 궤환 조건하의 작업 수행도)

  • Yoon, Wan-Jin;Kim, Jin;Cho, Am
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.3-12
    • /
    • 1995
  • In this research, we investigated the effect of three visual feedback conditions (direct viewing, one-monitor viewing, and tow-monitors viewing) on the task performance of human operator in teloperation task. The three different level of task difficulties under each concitions were performed by thirty-six subjects. The result of the experiments was analysed by the task difficulties, and the measurements of performance are the task completion time and the frequency of task errors. In a teleoperator, the participation of a human operator is always required, and the man-machine interface and the operator's abilities is an important issue. Recently, the different types of sensory feedback conditions(force, vision, sound, tactile, etc) for teleoperation is a very active research area in ergonomics. Among them, visual feedback conditon is an important sense that can provide the information of task environment. Therefore, the sufficient understandings and investigation for human ability under various visual feedback conditions is required to establish the efficient man-machine interface of teleoperation. The result showed that the visual feecback conditions and the level of task difficulties have a significant effect on the task performance. For three level of task difficulties, the task completion time was the shortest under the condition of direct viewing. The number of task errors under the conditions of direct viewing and two-monitors viewing were reduced by more than half compare to that of one-monitor viewing.

  • PDF