• Title/Summary/Keyword: Operational evaluation

Search Result 812, Processing Time 0.023 seconds

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

A Methodology to Develop a Curriculum based on National Competency Standards - Focused on Methodology for Gap Analysis - (국가직무능력표준(NCS)에 근거한 조경분야 교육과정 개발 방법론 - 갭분석을 중심으로 -)

  • Byeon, Jae-Sang;Ahn, Seong-Ro;Shin, Sang-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.40-53
    • /
    • 2015
  • To train the manpower to meet the requirements of the industrial field, the introduction of the National Qualification Frameworks(hereinafter referred to as NQF) was determined in 2001 by National Competency Standards(hereinafter referred to as NCS) centrally of the Office for Government Policy Coordination. Also, for landscape architecture in the construction field, the "NCS -Landscape Architecture" pilot was developed in 2008 to be test operated for 3 years starting in 2009. Especially, as the 'realization of a competence-based society, not by educational background' was adopted as one of the major government projects in the Park Geun-Hye government(inaugurated in 2013) the NCS system was constructed on a nationwide scale as a detailed method for practicing this. However, in the case of the NCS developed by the nation, the ideal job performing abilities are specified, therefore there are weaknesses of not being able to reflect the actual operational problem differences in the student level between universities, problems of securing equipment and professors, and problems in the number of current curricula. For soft landing to practical curriculum, the process of clearly analyzing the gap between the current curriculum and the NCS must be preceded. Gap analysis is the initial stage methodology to reorganize the existing curriculum into NCS based curriculum, and based on the ability unit elements and performance standards for each NCS ability unit, the discrepancy between the existing curriculum within the department or the level of coincidence used a Likert scale of 1 to 5 to fill in and analyze. Thus, the universities wishing to operate NCS in the future measuring the level of coincidence and the gap between the current university curriculum and NCS can secure the basic tool to verify the applicability of NCS and the effectiveness of further development and operation. The advantages of reorganizing the curriculum through gap analysis are, first, that the government financial support project can be connected to provide quantitative index of the NCS adoption rate for each qualitative department, and, second, an objective standard is provided on the insufficiency or sufficiency when reorganizing to NCS based curriculum. In other words, when introducing in the subdivisions of the relevant NCS, the insufficient ability units and the ability unit elements can be extracted, and the supplementary matters for each ability unit element per existing subject can be extracted at the same time. There is an advantage providing directions for detailed class program and basic subject opening. The Ministry of Education and the Ministry of Employment and Labor must gather people from the industry to actively develop and supply the NCS standard a practical level to systematically reflect the requirements of the industrial field the educational training and qualification, and the universities wishing to apply NCS must reorganize the curriculum connecting work and qualification based on NCS. To enable this, the universities must consider the relevant industrial prospect and the relation between the faculty resources within the university and the local industry to clearly select the NCS subdivision to be applied. Afterwards, gap analysis must be used for the NCS based curriculum reorganization to establish the direction of the reorganization more objectively and rationally in order to participate in the process evaluation type qualification system efficiently.