• Title/Summary/Keyword: Operational capability

Search Result 354, Processing Time 0.023 seconds

Investigation into the Development of Technology for Orthopeadic Surgery Utilizing Reverse Engineering and Rapid Prototyping Technology (역공학과 쾌속조형공정을 이용한 정형외과수술기법 개발에 관한 연구)

  • 안동규;이준영;양동열;한길영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.188-196
    • /
    • 2004
  • The objective of this paper is to propose a new technology of the orthopaedic surgery using the combination of reverse engineering (RE) based on CT data and rapid prototyping (RP). The proposed technology utilizes symmetrical characteristics of the human body and capability of the combination of RE and RP, which rapidly manufactures three-dimensional parts from CT data. The original .stl data of injured extents are generated from the mirror transformation of .stl file fur uninjured extents. The physical shape before injuring is manufactured from RP using the original .stl data. Subsequently, pre-operative planning, such as a selection of proper implants, preforming of the implant, a decision of fixation locations and an insert position for the implant, an estimation of the invasive size, and pre-education of operators are performed using the physical shape. In order to examine the applicability and the efficiency of the proposed surgical technology, various case studies, such as a distal tibia commented fracture, a proximal tibia plateau fracture and an iliac wing fracture of pelvis, are carried out. From the results of case studies, it has been shown that the proposed technology is an effective surgical tool of the orthopaedic surgery reducing the operational time, the operational cost, the radiation exposure of the patient and operators, and morbidity. In addition, the proposed technology could improve the accuracy of operation and the speed of rehabilitation.

A Study on the Hydrostatic Mooring Stability of Submerged Floating Ellipsoidal Habitats

  • Pak, Sang-Wook;Lee, Han-Seok;Park, Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.328-334
    • /
    • 2019
  • Underwater architecture in providing a comfortable living space underwater is mandated to survive prevailing environmental loads, especially hydrostatic ambient water pressure exerted on the structure of individual habitat hulls at depth and hydrodynamic fluctuation of external forces that perturb the postural equilibrium and mooring stability of the underwater housing system, for which the design including the hull shape and mooring system constraint the responses. In this study, the postural stability of a proposed underwater floating housing system with three vertically connected ellipsoidal-shape habitat hulls of different sizes are theorized and calculated for hydrostatic stability, using MATLAB in the volumetric integration of a hull and the weight of operational loads under assumed scenarios. The assumptions made in the numerical method to estimate the stability of the habitat system include the fixed weight of the hulls, and their adjustable loads within operational limits for the set meteorological oceanic conditions. The purpose of this study was to numerically manipulate a) The buoyancy and b) The adjusted center of mass of the system within the range of designed external and internal load changes, by which the effective mooring system capability and postural equilibrium requirements were argued with the quantitative analysis.

Application of STANAG-4586 Ed. 4 based Standardization for Up-to-Dated Interoperability of Military UAV System

  • Kim, Hack-Joon;Yoon, Chang-Bae;Hong, Su-Woon;Lee, Woo-Sin;Yoo, In-Deok;Jo, Se-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • With the development of various types of military Unmanned Aircraft(UA)s, the need for interworking and integration between different platforms gradually increased. In order to ensure interoperability at each military UA System(UAS) level, North Atlantic Treaty Organization(NATO) has established STANAG-4586 "Standard Interfaces of Unmanned Aircraft(UA) Control Systems(UCS) for NATO UA Interoperability-Interface Control Document". This paper looks at the basic design structure of STANAG-4586 and the changes on Edition 4 to enhance joint operational capability through reflecting and updating the interoperability design of the military UAS. In particular, we analyze the enhanced Datalink Transition/Handover Procedure and Autonomous functions, one of the biggest features added to the edition. Through this, we propose a modification of UA data link exclusive control using UA Bypass structure, which was impossible in the one-to-one communication structure between existing UA and Core UCS(CUCS). We also suggest ways to improve UA operational reliability by applying Autonomous Functions that directly decides how to deal with emergency situations, rather than by a remote operator over CUCS.

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

A Comparison of Data Extraction Techniques and an Implementation of Data Extraction Technique using Index DB -S Bank Case- (원천 시스템 환경을 고려한 데이터 추출 방식의 비교 및 Index DB를 이용한 추출 방식의 구현 -ㅅ 은행 사례를 중심으로-)

  • 김기운
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.1-16
    • /
    • 2003
  • Previous research on data extraction and integration for data warehousing has concentrated mainly on the relational DBMS or partly on the object-oriented DBMS. Mostly, it describes issues related with the change data (deltas) capture and the incremental update by using the triggering technique of active database systems. But, little attention has been paid to data extraction approaches from other types of source systems like hierarchical DBMS, etc. and from source systems without triggering capability. This paper argues, from the practical point of view, that we need to consider not only the types of information sources and capabilities of ETT tools but also other factors of source systems such as operational characteristics (i.e., whether they support DBMS log, user log or no log, timestamp), and DBMS characteristics (i.e., whether they have the triggering capability or not, etc), in order to find out appropriate data extraction techniques that could be applied to different source systems. Having applied several different data extraction techniques (e.g., DBMS log, user log, triggering, timestamp-based extraction, file comparison) to S bank's source systems (e.g., IMS, DB2, ORACLE, and SAM file), we discovered that data extraction techniques available in a commercial ETT tool do not completely support data extraction from the DBMS log of IMS system. For such IMS systems, a new date extraction technique is proposed which first creates Index database and then updates the data warehouse using the Index database. We illustrates this technique using an example application.

On the Development of Reference Guidelines for Self-evaluation of Organization's Systems Engineering and Project Management Capability (조직의 SEPMC 자체 평가에 유용한 참조기준 개발)

  • Choi, Young Gil;Lee, Jae Chon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2012
  • In modern systems, the operational capability of the system to the user needs is expanding rapidly to accommodate the size of the system, functionality, and interfaces are becoming increasingly complex. Accordingly, the systematic practice of project management and systems engineering in the system development process, as an important element in successful systems development is recognized. EIA/ANSI 632, ISO/IEC15288, the leading international standard for systems engineering and is the leading international standard on project management PMBOK. CMMI is also contains information about the activities of project management and systems engineering and worldwide basis to assess the maturity of an organization's ability to develop system being used. But CMMI model is too complex of structure and there are many overlap parts of contents. So there are many problems for members of organization understanding all of CMMI model, applying organization and, achieving improvement activity. In this study, through the analysis and integration between the model and the related standard coverage activities essential for successful systems development in organizations that require systems engineering and project management capabilities(SEPMC) for self-assessment and continuous improvement activities to provide useful reference guideline.

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.

A Study on Steady-state Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as welt as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed. In investigation of performance analysis, it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case has much greater than that with the flight speed variation case.

  • PDF

RCS Overpressure Protection Analysis Using SEBIM POSRV (SEBIM POSRV를 이용한 원자로 냉각재계통의 과압보호 해석)

  • Kim, Chong-Hoon;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • The overpressure protection system for PWR should be designed with sufficient capacity to limit the pressure to less than 110% of the reactor coolant system design pressure during the most severe abnormal operational transient. In this study, the feasibility of adopting the SEBIM POSRV instead of the current spring loaded pop-opening safety valves to the ABB-CE designed 2825 MWt PWR is investigated for its overpressure protection capability. The required SEBIM POSRV size as well as its opening/closing setpoints are determined through a series of computer analyses using the LTC code which has been used for the overpressure protection analysis for Yonggwang units 3&4. The analysis results show that the overpressure protection system with monobloc SEBIM POS-RV can maintain the RCS pressure below 110% of the design pressure demonstrating its overpressure protection capability for the ABB-CE designed 2825 MWt PWRs.

  • PDF

On an Improved Method for System Readiness Assesment to Meet Required Operational Capability in Weapon Systems Development (무기체계개발에서 작전운용성능을 만족시키기 위한 개선된 시스템성숙도 평가방법)

  • Kwon, Il-Ho;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3602-3610
    • /
    • 2013
  • The risk of failure in the development of modern weapon systems has been increasing as the demand on the capability and the resulting complexity of the weapons on the war fields are increasing drastically. The analysis of failure has indicated that the main causes can be the following: one is attributed to the unsatisfaction of the system operation concept; and the other is the use of premature technology. As such, DAPA in Korea is urging that the weapons systems development should meet the required operational capability (ROC) as a critical performance requirement. On the other hand, an approach to risk management is to use the technology readiness level (TRL) assessed for each individual technology alone. However, the method of TRL cannot assess the effect of integration between technologies and cannot be performed at system level, which is crucial to systems development. In order to improve the shortfalls, a concept of system readiness level (SRL) has been studied by introducing the technologies integration and also some forms of analysis of advanced degree of difficulty studied separately, but no model considering both of two reported yet. In this paper, under the framework of meeting the ROC, an improved SRL assessment model is presented, which is also considering the advanced degree of difficulty simultaneously. The application of the improved assessment method is discussed in connection with the life cycle of the weapon systems development in conformance with the ROC of DAPA.