• Title/Summary/Keyword: Operational Reliability

Search Result 519, Processing Time 0.027 seconds

Prediction of Safety Critical Software Operational Reliability from Test Reliability Using Testing Environment Factors

  • Jung, Hoan-Sung;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately.

  • PDF

A Study on Reliability Evaluation and Improvement Process of Aerospace Electronic Equipments using Operational Reliability-Cost Matrix (신뢰성-비용 매트릭스를 이용한 항공전자장비의 신뢰성 평가 및 개선 프로세스 연구)

  • Jo, In-Tak;Lee, Sang-Cheon;Park, Jong-Hun;Bae, Sung-Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.633-646
    • /
    • 2014
  • Purpose: The conventional predicted MFTBF by military standard has a wide discrepancy to that of real-world operation, which leads to overstock and increase operation cost. This paper introduces a analyzing frame using operational reliability and cost data to overcome the discrepancy, and provides reliability improvement process employing the analyzing frame. Methods: This paper suggests Reliability-Cost Matrix (R-C Matrix) and Operational Reliability & Cost Index (ORCI) as a tool for reliability evaluation. Results: KOREIP(KAI's Operational Reliability Evaluation and Improvement Process) is developed employing Reliability-Cost Matrix and Operational Reliability & Cost Index. Conclusion: KOREIP provides a process and its activities based on Reliability-Cost Matrix frame. The process and activities leads reliability improvement of aerospace electronic equipments by means of categorizing and follow-up action based on the concept of frame.

A Study on the S/W Reliability during Operational Stage (운영단계의 소프트웨어 신뢰도에 관한 연구)

  • 최규식;김용경
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 2003
  • One method to improve S/W quality before releasing after development is to enhance the its reliability, whose direct methodology is to detect and revise the fault through testing. Once the S/W is released because it meets the target reliability, We operational reliability arises. it is obvious the operational reliability different depending on the condition whether it is universal(package) S/W or dedicated S/W. We propose the methodology to calculate operational software reliability of universal and dedicated S/Ws in this paper.

  • PDF

A Study on the Software Reliability of Operational Stage S/W (운영중인 소프트웨어의 신뢰도에 관한 연구)

  • Che, Gyu-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.445-450
    • /
    • 2009
  • One method to improve quality before releasing of S/W after development is to enhance the reliability, whose direct methodology is to detect and revise fault through testing. Once the S/W is released because it meets the target reliability, the operational reliability problem arises. It is obvious the operational reliability different from that of testing stage depending on the condition whether it is universal(package) S/W or dedicated S/W. I propose the methodology to calculate operational software reliability of universal and dedicated S/W in this paper.

A Study on the Reliability Growth Trend of Operational S/W Failure Reduction

  • Che, Gyu-Shik;Kim, Yong-Kyung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.143-146
    • /
    • 2005
  • The software reliability growth depends on the testing time because the failure rate varies whether it is long or not. On the other hand, it might be difficult to reduce failure rate for most of the cases are not available for debugging during operational phase, hence, there are some literatures to study that the failure rate is uniform throughout the operational time. The failure rate reduces and the reliability grows with time regardless of debugging. As a result, the products reliability varies with the time duration of these products in point of customer view. The reason of this is that it accumulates the products experience, studies the exact operational method, and then finds and takes action against the fault circumstances. I propose the simple model to represent this status in this paper.

  • PDF

A Study on the S/W Reliability Comparison during Operational Stage (운영중 소프트웨어의 고장률에 의한 신뢰도 비교 연구)

  • Che Gyu-Shik;Moon Myung-Ho;Jeon In-Oh
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.2
    • /
    • pp.17-28
    • /
    • 2006
  • The SRGM has been studied under the assumption that S/W reliability can grow as the fault causing failure is removed even during operational phase because the debugging is available. On the other hand, some papers insist on the uniform failure rate during operational phase because the debugging may not be available in case of universal software. The phenomenon, however, has been observed informally many times that the products S/W reliability grows as the time goes by even without any debugging in point of customer view. I propose the simple approaching method to model the S/W reliability phenomenon that the failure rate reduces as time goes on without modifying the existing reliability model in this paper.

  • PDF

Operational Reliability Analysis of Guided Weapon Systems (유도무기 시스템의 운용 신뢰도 분석)

  • Ha, Ju Seok;Kim, Kyung Mo
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.95-101
    • /
    • 2017
  • Reliability is the priority matter in guided weapon systems. The reliability prediction data is used during the devel opment stage as the manufacturing cost is very high and the production quantity if quite limited. At the same time it takes relatively a long period of time to acquire a reliable operation data set after deployment such that in order t o determine the operational reliability, weapons must be tested and analyzed in real operating environments. For the research, the life distributions were estimated by using actual operation data and the reliability was calculated by ap plying the method of least squares and maximum likelihood estimation. Also, the comparisons were made between pr edicted reliability and actual operational reliability. As a result, the actual reliability of each system was higher than predicted reliability and it was considered that such a difference was caused by the fact that the application of the l atest designing technology and improved parts to the guided weapon systems was not reflected on the estimation of predicted reliability. It was possible to confirm the actual operational reliability of domestic (ROK) guided weapon sy stems through this research and the methods used here will contribute to the reliability analyses for the future guide d weapon systems to be developed.

A Study on Reliability Growth through Failure Analysis by Operational Data of Avionic Equipments (항공전자장비의 운용자료 분석을 통한 신뢰성 성장 연구)

  • Jo, In-Tak;Lee, Sang-Cheon;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.100-108
    • /
    • 2013
  • In aerospace industry, MTBF (Mean Time Between Failure) and MFTBF (Mean Flight Time Between Failure) are generally used for reliability analysis. So far, especially to Korean military aircraft, MFTBF of avionic equipments is predicted by MIL-HDBK-217 and MIL-HDBK-338, however, the predicted MFTBF by military standard has a wide discrepancy to that of real-world operation, which leads to overstock and increase operation cost. This study analyzes operational data of avionic equipments. Operational MFTBF, which is calculated from operational data, is compared with predicted MFTBF calculated conventionally by military standard. In addition, failure rate trend is investigated to verify reliability growth in operational data, the investigation shows that failure rate curve from operational data has somewhat pattern with decreased failure rate and constant failure rate.

Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems (현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가)

  • Hyun, Yu-Kyung;Park, Jinkyung;Lee, Johan;Lim, Somin;Heo, Sol-Ip;Ham, Hyunjun;Lee, Sang-Min;Ji, Hee-Sook;Kim, Yoonjae
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

A Study on the Operational Stage Reliability of Dedicated Software (주문형 소프트웨어의 운영단계 신뢰도에 관한 연구)

  • Che, Gyu-Shik
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.837-844
    • /
    • 2003
  • The software reliability have to be improved as one major method to enhance the quality of developed software, and its defect is detected and modified through testing as a direct way to meet the purpose before releasing. Once its reliability grows up to the target and it is released to public. there nay be operational reliability problem. The operational software reliability trend nay be different depending on the condition whether it is universal or dedicated. And its reliability estimation is changed based on the condition if it follows uniform testing efforts or Weibull testing efforts. I study the operational reliability trend of dedicated software, applying two case testing efforts for the released item.