• Title/Summary/Keyword: Operation and maintenance

Search Result 2,094, Processing Time 0.034 seconds

A Study of the Proper Sizing of a Subway Station Waiting Area (도시철도 대기공간의 적정규모 산정에 관한 연구)

  • Kim, Jonghwang;Baek, Sungjoon;Nam, Doohee
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2016
  • Subway station scales are determined by peak predictions. In this study, the purpose behind the installation of a subway is public transportation convenience and public interest, but economic validity is also important. By proving that the scale of the station is excessive with regard to the target station size for Seoul subway Line 5-8, a reasonable plan. can be sought. According to station installation standards, the area of the station under investigation here is out of the service levels by six stages (A~F), and it must be four or more levels (D). The Actual level for the B level is a two-step design. The Actual ratio for over- Peak predictions is only 17.8% on average. The results of measurements of the excess area and determination of the excessive costs were analyzed by subdividing the area and by calculating it based on the B level, finding that it is possible to provide benefits for customers only in the current design, with an area ratio of 16.3%. Given the weight, it was estimated that current conditions can meet the needs of only 18.6% of the current area. Simplifying the scale calculation method of the station, it is convenient, safe, and advantageous to move citizens only if the scale can be streamlined. Then, with a reduced initial investment, maintenance costs during the operation can be reduced.

Development of TLCSM Based Integrated Architecture for Applying FRACAS to Defense Systems (국방 무기체계 FRACAS 적용을 위한 TLCSM 기반 통합 아키텍처 구축)

  • Jo, Jeong-Ho;Song, Hyeon-Su;Kim, Bo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.190-196
    • /
    • 2020
  • FRACAS(Failure Reporting, Analysis and Corrective Action System) has been applied in various industries to improve the reliability of the systems. FRACAS is effective in improving reliability by repeating failure analysis, proper corrective action, and result verification for identified failures. However, FRACAS has many limitations in terms of process, data collection and management to be integrated into the existing development environment. In the domestic defense industry, studies on the development of FRACAS system and process improvement have been conducted to solve the difficulties of applying FRACAS, but most of them are concentrated in the operation/maintenance phase. Since FRACAS should be conducted in consideration of TLCSM(Total Life Cycle System Management), it is necessary to study the reference architecture so that FRACAS can be applied from the early design phase. In this paper, we studied the TLCSM-based integrated architecture considering the system life cycle phases, FRACAS closed-loop process, and FRACAS essentials in order to effectively apply FRACAS throughout the life cycle of defense systems. The proposed architecture was used as a reference model for FRACAS in a shipboard combat system.

A Study on Comparison Analysis for Calculating of Weapon System Operation Cost at the Development Stage (개발단계에서 무기체계 운영유지비 예측을 위한 비교분석 연구)

  • Jeong, Jun;Lee, Ki-Won;Cha, Jong-Han;Choi, Dong-Hyun;Park, Kyoung-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.83-94
    • /
    • 2019
  • Recently, the importance of Total Life Cycle System Management (TLCSM) and LIFE-CYCLE COSTS management is increasing in the development of weapon systems. In cost management, cost forecasting is important from the initial development stage, but it is difficult to predict the total life cycle cost at the development stage. In this study, we propose efficient management cost calculation and management at the development stage of the weapon system by comparison analysis between the PRICE-HL model and NemoSIM to calculate the maintenance cost under the CAIV concept. Based on the study results, further in-depth analyzes of the PRICE-HL model and NemoSIM input values / results are performed. In addition, we provide a more accurate method of calculating the cost of maintaining and operating the weapon system and a plan to utilize the result of NemoSIM in the ILS element development.

A Study on Methods for Accelerating Sea Object Detection in Smart Aids to Navigation System (스마트 항로표지 시스템에서 해상 객체 감지 가속화를 위한 방법에 관한 연구)

  • Jeon, Ho-Seok;Song, Hyun-hak;Kwon, Ki-Won;Kim, Young-Jin;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.47-58
    • /
    • 2022
  • In recent years, navigation aids, which plays as sea traffic lights, have been digitized, and are developing beyond simple sign purpose to provide various functions such as marine information collection, supervision, control, etc. For example, Busan Port which is located in South Korea is leading the application of the advanced technologies by installing cameras on buoys and recording video images to supervise maritime accidents. However, there are difficulties to perform their major functions since the advanced technologies require long-term battery operation and also management and maintenance of them are hampered by marine characteristics. This study proposes a system that can automatically notify maritime objects passing around buoys by analyzing image information. In the existing sensor-based accident prevention systems, the alarms are generated by a collision detection sensor. The system can identify the cause of the accident whilst even though it is difficult not possible to fundamentally prevent the accidents. Therefore, in order to overcome these limitations, the proposed a maritime object detection system is based on marine characteristics. The experiments demonstrate that the proposed system shows about 5 times faster processing speed than other existing algorithms.

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition (능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지)

  • Jeon, Jun Young;Jung, Hwee kwon;Park, Gyuhae;Ha, Jaeseok;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.345-352
    • /
    • 2016
  • As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

A Study on Estimation of Degree of Compaction by Correction for Coarse Particle Ratio of Fill Material (성토재료의 조립자율 보정에 의한 다짐도 평가에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Changyoung;Kang, Sang-Kyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • The degree of compaction of embankments is generally measured using the sand replacement method or a soil density gauge. However, these methods include coarse particles, which are relatively large. The degree of compaction is overestimated if the in-situ soil density is simply compared with the density obtained from a Proctor compaction test (KS F 2312, 2001), because the density of coarse particles is higher than that of soil. However, there is no recommended correction for the coarse particle ratio in Korea, thus intentionally increasing the degree of compaction for structures to which large loads are applied or for which compaction is critical. Here, a correction considering the Korean Proctor compaction test and the difference between the maximum allowable particle sizes was recommended after corrections for coarse particle ratios in other countries were collected and analyzed. The degree of compaction was re-estimated by applying the recommended correction to the results of both Proctor compaction and sand replacement tests. The degree of compaction without the correction of coarse particle ratio was overestimated, because the re-estimated degree of compaction decreased as the coarse particle ratio increased. The relatively accurate results obtained from the field application of the correction will offer long-term cost savings due to reduced maintenance fees during operation.

An approximate study on flood reduction effect depending upon weir or gate type of lateral overflow structure of washland (강변저류지 월류부에서 월류제 또는 수문 형식에 따른 홍수저감효과에 관한 개략적 연구)

  • Ahn, Tae Jin
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.573-583
    • /
    • 2013
  • Construction of large-scale structures such as dams would be suggested actively to cope with change of flood characteristics caused by climate change. However, due to environmental, economic and political issues, dams are not ideally constructed. Thus flood damage reduction planning projects would get started including washland or detention pond for sharing the flood in basin. The washland made artificially by human being is an area of floodplain surrounded by bank to be intentionally inundated by overflowing through overflow structure adjacent to main channel during flood season. Flood reduction capacity at just downstream of each washland could be affected by type, length, and crest elevation of overflow structure in addition to shape of design hydrograph, storage volume of washland, etc.. In this study flood reduction effects of washland are estimated for overflow weir type and gate type to compare the results of flood reduction respectively subjected to given hydrograph in sample site, the Cheongmicheon stream. It has been shown that even if gate type at overflow structure could yield more flood reduction than overflow weir type, economic aspect such as initial cost, operation cost and maintenance cost should be considered to select the type of overflow structure because flood reduction rate by gate type could not be significant value from engineering point of view.

Breakdown Characteristics of Teflon by N2-O2 Mixture gas (N2-O2 혼합가스에 따른 Teflon의 절연파괴특성)

  • Choi, Eun-Hyeok;Choi, Byoung-Sook;Park, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • With the increasing development of industrial society and the availability of high quality electrical energy, the simplification of operation and maintenance procedures is required, in order to ensure the reliability and safety of electrical systems. In this paper, the dielectric breakdown characteristics of $N_2-O_2$ mixed gas solid insulation, which is used as an alternative to SF6 in various electric power facilities, are verified. When the gas mixture has a composition ratio similar to that of the atmosphere, the dielectric breakdown characteristics are relatively stabilized. It was confirmed that the breakdown voltage of the gas in the electrode near an equal electric field increased with increasing pressure according to Paschen's rule. The breakdown voltage of the surface increased linearly with increasing pressure, and the difference was caused by the mixing ratio of $O_2$ gas. This change in the surface insulation breakdown voltage was caused by the influence of the electrically negative $O_2$ gas and the intermolecular collision distance. In this study, the influence of the intermolecular impact distance was larger (than that in the absence of the electrically negative $O_2$ gas). The breakdown voltage relation applicable to Teflon according to the surface insulation characteristics was calculated. The characteristics of the surface insulation properties of Teflon, which is used as a solid insulation material, were derived as a function of pressure. It is thought that these results can be used as the basic data for the insulation design of electric power facilities.

The Exploratory Study on IT Investment Management of the Public Sector Based on Forecasting (수요예측기반의 공공정보화 투자관리방안에 대한 탐색적 연구)

  • Lee, Jae-Du;Park, Sae-Gue
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • From 2004 to 2013, the annual investment for the ICT sector in Korea amounted to about 3.2 trillion won. Depending on whether the government policy allowed for budget increases and/or decreases, this impacted the investment in the ICT sector. In particular, the fixed costs of operation and maintenance lead to a reduced chance for a new potential demands in IT programs. Even though a situation may exist that there are insufficient funds available, there is a need for building a sustainable long-term IT investment management system. The purpose of this study is to conduct basic research for the arrangement of preparation to meet IT needs required in the public sector. For this, this paper introduces the concept of IT Investment Management based on prudent forecasting. After both foreign and domestic relevant cases are reviewed, implications will be derived from the aforementioned cases. Through this process, the direction of IT Investment Management based on forecasting for the IT projects decision making will be suggested. These research results could be used for helping to develop better policies and a more efficient management of the public sector IT budget.

A Study on the Closed-Loop Air Drying Technology for Drying Wastewater Sludge (하수슬러지 건조를 위한 폐루프 공기건조 기술에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.821-827
    • /
    • 2012
  • Air drying is a technology to dry sludge at the ejector and multi cyclone as intaking and blowing air from outside. So, this technology has a weak point that operating fluctuation is large according to an outside conditions as well as energy consumption is also large due to open loop structure. This is to develop the closed-loop air drying system to be built the dehumidifier consisted of condenser, cooler and compressor at rear side of separator of air dryer, as a way to solve some problem. Air is circulation by the method of blowing-drying-dehumidifying-blowing within this system. It is analyzed that an air circulated at closed-loop air drying equipment contains the energy of 50% more compared with open-loop air drying and is operated regularly because of quality maintenance of air to dry sludge. And also it is analyzed that the cost of drying sludge of 1 ton by closed-loop air drying equipment is lower about 35% than conventional equipment. Therefore, this is evaluated by useful drying technology to face an unexpected climatic conditions due to regular operation as well as low energy consumption.