• 제목/요약/키워드: Operation Department

검색결과 13,702건 처리시간 0.044초

RELIABLE OPERATION IN COMS GROUND CENTERS

  • Lim, Hyun-Su;Ahn, Sang-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.496-499
    • /
    • 2007
  • The COMS ground segment will operate the geostationary satellite continuously 24h/7days and deliver processed data to end-users with respect to the predefined schedule without delay. For reliable operation, each COMS ground center has internally dual-configuration for critical systems but impossible to every components. Any unexpected failure or regular maintenance to the single configured antenna system may lead the interruption of COMS service and operation. The natural disaster or external attack can destroy one ground center and the operation will be stopped. Therefore COMS program implements backup system remotely located in other centers. Even considering foreign geostationary systems, it's the best solution guaranteeing consistent system operation against internal failure or external disaster.

  • PDF

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

Loading pattern design and economic evaluation for 24-month cycle operation of OPR-1000 in Korea

  • Jeongmin Lee;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1167-1180
    • /
    • 2023
  • Due to the tightened regulatory environment since the Fukushima accident, the capacity factor of Korean nuclear power plants has been declining since 2011. To overcome this circumstance, a shift from 18-month to 24-month cycle operation is being considered in Korea. Therefore, in this study, loading patterns(LPs) for 24-month cycle operation of the Korean standard nuclear power plant(OPR-1000) are suggested and economic evaluations are performed. A single-zone LP with 89 fresh fuels was evaluated to be optimal for 24-month operation of OPR-1000 in terms of economic gain. The 24-month operation of OPR-1000 with this LP gives a profit of 7.073 million dollars per year compared to 18-month operation.

MEASUREMENT OF IMPLEMENTATION LOSS FOR BRIT RECEIVER

  • Park Durk-Jong;Koo In-Hoi;Yang Hyung-Mo;Ahn Sang-Il;Kim Eun-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.561-563
    • /
    • 2005
  • From the IF (Intermediated Frequency) loop-back test, BER (Bit Error Rate) degradation of processed data, HRIT (High Rate Information Transmission), is estimated by proposed measurement configuration. The specific parameters, likely data rate, FEC (Forward Error Correction), and modulation method, are based on the outcomes of SRR (System Requirements Review) which was held on 13-14 June 2005, in Toulouse. The proposed measurement procedure is that combined 70MHz modulated signal and noise is connected to the spectrum analyzer and receiver. The former measures the C/No (Carrier to Noise density ratio) and the latter estimates BER of FEC decoded data. Implementation loss can be obtained by subtracting measured BER from calculated BER which is also subtracted data rate from measured C/No. This test procedure is very simple and can be applied to assess the implementation loss of dedicated receiver for HRIT in the future.

  • PDF

OVERALL LINK ANALYSIS ON HRIT AND LRIT IN COMS

  • Park Durk-Jong;Hyun Dae-Wan;Kang Chi-Ho;Ahn Sang-Il;Kim Eun-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.98-100
    • /
    • 2005
  • This paper describes link analysis on the processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), for the preliminary design of interface between COMS (Communication, Ocean and Meteorological Satellite) and ground station. At the MODAC (MeteorologicaVOcean Data Application Center), the processed data are transmitted to user station via COMS with normalization and calibration by pre-processing of MI (Meteorological Imager) data. Due to consider satellite as radio relay, overall analysis containing uplink and downlink is needed. Specific link parameters can be obtained with using the outcomes of SRR (System Requirement Review) which was held on 13-14 June 2005, in Toulouse. From the relation between overall link margin and output power of HPA (High Power Amplifier) of MODAC, it is shown that even though the minimum power related with COMS receiving power range is transmitted at MODAC, the obtained link margin of HRIT could be above 3 dB at user station which antenna elevation angle is 10 degree.

  • PDF

PERFORMING OF SOC DATS INTERFACE TEST WITH MODEM/BB

  • Park, Durk-Jong;Hyun, Dae-Hwan;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.64-66
    • /
    • 2006
  • DATS will connect with IMPS and LHGS to perform the reception of sensor data and the transmission of user's meteorological data, LRIT and HRIT. MODEM/BB will perform the de-commutation of received sensor data as MI and GOCI raw data according to VCID before sending them to MI and GOCI IMPS, respectively. Especially, MODEM/BB in SOC needs to be connected to six clients that consist of the primary and backup IMPS of MSC, KOSC and SOC. On the other hand, LRIT and HRIT delivered from LHGS are encoded as VITERBI and modulated by MODEM/BB. Considering sensor data transmitted from COMS, the assumed format and size of CADU are described in this paper. Finally, results related to the status of received LRIT and HRIT by frame synchronizer in user station are also described.

  • PDF

Orbit Determination and Maneuver Planning for the KOMPSAT Spacecraft in Launch and Early Orbit Phase Operation

  • Lee, Byung-sun;Lee, Jeong-Sook;Won, Chang-Hee;Eun, Jong-Won;Lee, Ho-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.29-32
    • /
    • 1999
  • Korea Multi-Purpose SATellite(KOMPSAT) is scheduled to be launched by TAURUS launch vehicle in November, 1999. Tracking, Telemetry and Command(TT&C) operation and the flight dynamics support should be performed for the successful Launch and Early Orbit Phase(LEOP) operation. After the first contact of the KOMPSAT spacecraft, initial orbit determination using ground based tracking data should be performed for the acquisition of the orbit. Although the KOMPSAT is planned to be directly inserted into the Sun- synchronous orbit of 685 km altitude, the orbit maneuvers are required fur the correction of the launch vehicle dispersion. Flight dynamics support such as orbit determination and maneuver planning will be performed by using KOMPSAT Mission Analysis and Planning Subsystem(MAPS) in KOMPSAT Mission Control Element(MCE). The KOMPSAT MAPS have been jointly developed by Electronics and Telecommunications Research Institute(ETRI) and Hyundai Space & Aircraft Company(HYSA). The KOMPSAT MCE was installed in Korea Aerospace Research Institute(KARI) site for the KOMPSAT operation. In this paper, the orbit determination and maneuver planning are introduced and simulated for the KOMPSAT spacecraft in LEOP operation. Initial orbit determination using short arc tracking data and definitive orbit determination using multiple passes tracking data are performed. Orbit maneuvers for the altitude correction and inclination correction are planned for achieving the final mission orbit of the KOMPSAT.

  • PDF

표준전동차용 열차자동운전장치 (ATO) H/W 개발 (Development of Automatic Train Operation System H/W for KOREA Standard EMU)

  • 이수길;한성호;안태기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1457-1459
    • /
    • 2000
  • The ATO(Automatic Train Operation System) system is equipment for automatic and driverless operation of electric train with minimum control of operator. In this paper, we made ATO system with national technic and passed type test. We are convinced of reliability and safety of the ATO system on the seoul metro 7 line.

  • PDF

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF