• Title/Summary/Keyword: Operation Capacity

Search Result 2,160, Processing Time 0.029 seconds

The Variation of Multi Air Conditioner Operation Characteristics with the Arrangements of Connection Pipe Lengths (멀티에어컨의 연결 배관길이의 변화에 따른 운전특성 변화)

  • Park, B.D.;Ha, D.Y.;Jeong, B.Y.;Koh, J.Y.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.45-52
    • /
    • 2000
  • Multi A/C is consisted of one outdoor unit and several indoor units. When the Multi Air conditioner is installed, we have to be cautious of the length of pipe arrangements. When the pipe arrangement is installed with unbalance or too long, there can be cooling capacity losses and low EER. An experimental study was carried out about the operation characteristic of Multi Air conditioner varying the length of pipe arrangements. If the pipe arrangement of the system is 15m, the cooling capacity and EER were decreased 0.8% and 1.3% respectively compared to the case when pipe arrangement is 5m. In case of 25m, the cooling capacity and EER were decreased 10.7% and 12.2% respectively compared to the case of 5m. When the length of pipe is not same each other, it is profitable to make the pipe length of highest capacity indoor unit shortest.

  • PDF

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System

  • Park, Ki-Bum;Kim, Sung-Won;Lee, Yeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1612-1615
    • /
    • 2009
  • Water supply reliability indexes (WSRI) is estimated for assessment of water supply capacity in the downstream for parallel reservoir system in Nakdong River, South Korea, using allocation rule (AR) according to the water supply capacity of each reservoir and the characteristic of parallel reservoir system. The result of the analyzing parallel reservoir system for Andong and Imha reservoir in Nakdong River does not include evidences available enough to decide whether the results of water supply analysis are excellent in the current reliability evaluation or not. However, AR (C) shows a good result in the water supply capacity for each reservoir based on the connected operation system and the total water supply capacity at the control point of downstream by the average water supply capacity and possible range of water supply capacity suggested by this study. The average water supply capacity is analyzed by the reliability of monthly average water supply capacity. Furthermore, the possible range of water supply capacity is estimated by the standard deviation when water deficit occurs. Therefore, AR (C) is useful to establish and estimate the planning water supply capacity according to the monthly water supply condition and the possible range of water supply capacity when the water supply capacity deficit occurs, South Korea.

  • PDF

Study on Airport Operation Characteristics Analysis and Capacity Enhancement Strategies Using the Capacity Coverage Chart (CCC) (Capacity Coverage Chart(CCC)를 활용한 공항운영특성 분석 및 수용능력 증대방안에 관한 연구)

  • Joongha Shin;Sanghoon Kim;Hojong Baik;Juhwan Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.35-43
    • /
    • 2024
  • In domestic airport planning, capacity assessment traditionally focuses on comparing demand forecasts with runway capacity to identify saturation periods, which overlooks operational characteristics. Even when demand does not exceed capacity, prolonged near-capacity utilization can cause significant operational issues. Therefore, it is crucial to consider operational characteristics in capacity assessments to ensure stable airport operations and efficient development planning. This study uses the Capacity Coverage Chart to analyze the operational characteristics of Incheon Airport and major international airports. Based on the analysis, it suggests improving airspace and air traffic control procedures and utilizing off-peak hours to enhance operational efficiency at Incheon Airport. However, due to geopolitical constraints, increasing operational capacity at Incheon Airport is challenging. Thus, continuous efforts to expand infrastructure are necessary to meet future demand and prevent facility saturation.

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

A Study of Economic ESS Utilization Based on Supplement Control Plan for Stable Wind Energy Extraction (풍력발전의 전력공급 안정화를 위한 ESS 보조제어 기법과 경제적 용량 산정 연구)

  • Jung, Seungmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.22-28
    • /
    • 2018
  • In case of developing a combined system by a number of distributed resources with storage device, a number of application suggests a huge capacity can derive operational flexibility both power supply issues or when unexpected situation imposed. However, it is important to determine a resonable energy capacity because the device have many controversial cost issues in current power system industry. An ESS application which focusing essentially required points can induce appropriate storage capacity that required in economic operation. In this paper, a curtailment supporting algorithm based on storage device is introduced, and applied in the capacity calculation method. The main algorithm pursues handling minor exceeding quantities which can cause mechanical load at blade; This paper tries to include it for configuring hybrid algorithm with pitch control. Several fluctuating conditions are utilized in simulation to reflect critical situation. The analyzing process focuses on the control feasibility with applied capacity and control method.

Erlang Capacity and Call Blocking Probability of CDMA Hierarchical Cellular Systems with Soft Handoff (소프트 핸드오프를 갖는 CDMA 계층구조 셀룰러 시스템의 Erlang 용량과 호 차단확률)

  • Seong, Bong-Hun;O, Hyeon-Seok;Han, Jae-Chung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.481-490
    • /
    • 2000
  • This paper analyzes interference power, Erlang capacity, the number of handoff occurrences, and call blocking probability with respect to the cell radius, the soft handoff region, and the mobile's velocity in a CDMA hierarchical cellular system. The microcell cellular system has the higher Erlang capacity than the macrocell cellular system. However, the microcell cellular system, which has a high system capacity through frequency reuse has the call blocking probability higher than macrocell cellular system. Also the interference power and the call blocking probability are decreased with the operation of soft handoff. Therefore, this paper presents the optimization of soft handoff region so as to maximize system's Erlang capacity with the low the call blocking probability according to mobile's velocity in the CDMA hierarchial cellular system.

  • PDF

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF

Integrated Traffic Management Strategy on Expressways Using Mainline Metering and Ramp Metering (본선미터링과 램프미터링을 이용한 고속도로 통합교통관리 전략)

  • Jeong, Youngje;Kim, Youngchan;Lee, Seungjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2013
  • This research proposed integrated expressway traffic management strategy using ramp metering and toll mainline metering. This research suggested a traffic signal optimization model for integrated operation of ramp and mainline metering based on Demand-Capacity Model that is used to optimize allowable input volume for ramp metering in FREQ model. The objective function of this model is sectional throughput volume maximization, and this model can calculate optimal signal timings for mainline metering and ramp metering. This study conducted an effectiveness analysis of integrated metering strategy using PARAMICS and its API. It targeted Seoul's Outer Ring Expressway between Gimpo and Siheung toll gate. As a simulation result, integrated operation of mainline and ramp metering provided more smooth traffic flow, and throughput volume of mainline increased to 14% in congested section. In addition, a queue of 400 meter was formed at metering point of toll gate. This research checked that integrated traffic management strategy facilitates more efficient traffic operation of mainline and ramp from diffused traffic congestion.