• Title/Summary/Keyword: Operating ships

Search Result 308, Processing Time 0.028 seconds

Thermo-economic approach for absorption air condition onboard high-speed crafts

  • Seddiek, Ibrahim S.;Mosleh, Mosaad;Banawan, Adel A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.460-476
    • /
    • 2012
  • High-speed crafts suffer from losing a huge amount of their machinery energy in the form of heat loss with the exhaust gases. This will surely increase the annual operating cost of this type of ships and an adverse effect on the environment. This paper introduces a suggestion that may contribute to overcoming such problems. It presents the possibility of reusing the energy lost by the ships' exhaust gases as heating source for an absorption air condition unit onboard high-speed crafts. As a numerical example; the proposed method was investigated at a high-speed craft operating in Red Sea between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory. It showed the possibility of providing the required ship's air condition cooling load during sailing and in port. Economically, this will reduce the annual ship's operating cost. Moreover, it will achieve a valuable reduction of ship's emissions.

A Review of Winterization Trend for Vessels Operating in Ice-covered Waters (극지운항용 선박에 적용되는 방한기술 동향 분석)

  • Jeong, Seong-Yeob;Kang, Kuk-Jin;Jang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.135-142
    • /
    • 2019
  • Ice accretions on the ship equipment and areas are the most common issues for vessels operating in cold climate and ice-covered waters and it has effect on the vessel safety and operability of equipment and systems, thus ship machineries and structures exposed to low temperature environments should satisfy the winterization requirements specified in ice class rules. The main objective of this study is to review the state-of-the-art of winterization trend for vessels navigating in ice-covered waters. The hazard of icing and how ice accretions affect operations and safety are investigated firstly, and then winterized notations for each classification are summarized. In addition, winterization methods currently used in vessels operating in ice-covered waters are investigated for a better understanding of effective approach and its application. This information will provide a framework for future winterization issues to mitigate the ice accretion phenomena.

Numerical simulation of resistance performance according to surface roughness in container ships

  • Seok, Jun;Park, Jong-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • In recent years, oil prices have continued to be low owing to the development of unconventional resources such as shale gas, coalbed methane gas, and tight gas. However, shipping companies are still experiencing difficulties because of recession in the shipping market. Hence, they devote considerable effort toward reducing operating costs. One of the important parameters for reducing operating costs is the frictional resistance of vessels. Generally, a vessel is covered with paint for smoothing its surface. However, frictional resistance increases with time owing to surface roughness, such as that caused by fouling. To prevent this, shipping companies periodically clean or repaint the surfaces of vessels using analyzed operating data. In addition, studies using various methods have been continuously carried out to identify this phenomenon such as fouling for managing ships more efficiently. In this study, numerical simulation was used to analyze the change in the resistance performance of a ship owing to an increase in surface roughness using commercial software, i.e., Star-CCM+, which solves the continuity and Navier eStokes equations for incompressible and viscous flow. The conditions for numerical simulation were verified through comparison with experiments, and these conditions were applied to three ships to evaluate resistance performance according to surface roughness.

A Study on the Introduction of Pilot Aptitude Test for WIG Ships(Surface-Flying Ships) (수면비행선박 조종사 적성검사 도입에 대한 연구)

  • Park, Sangyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.24-33
    • /
    • 2021
  • Although it is the first transportation method to apply the 'Ground Effect' applied to aircraft to ships, WIG ships, which are classified as 'Ships' operating on the water under international law. The pilot aptitude test, which has the effect of preventing safety accidents in advance, has not yet been established as a legal system in S. Korea, after being certified by the Korean Register of Shipping (KR) for the first time in the world in March 2020. Therefore, the purpose of this study is to ensure that identifying the importance, recognition, correlation, etc. of the tools and items of aptitude testing, from a group of experts, can be used appropriately for future development of legal aptitude testing tools. As a method of study, the questionnaire method was used, and the analysis confirmed that the tools used on aircraft and ships could be used appropriately. In particular, Due to the characteristics of the WIG ships, it was confirmed that it is necessary to develop more specifically in the future, the operational qualifications and physical fitness items, which are the aptitude evaluation items.

Estimation of ship operational efficiency from AIS data using big data technology

  • Kim, Seong-Hoon;Roh, Myung-Il;Oh, Min-Jae;Park, Sung-Woo;Kim, In-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.440-454
    • /
    • 2020
  • To prevent pollution from ships, the Energy Efficiency Design Index (EEDI) is a mandatory guideline for all new ships. The Ship Energy Efficiency Management Plan (SEEMP) has also been applied by MARPOL to all existing ships. SEEMP provides the Energy Efficiency Operational Indicator (EEOI) for monitoring the operational efficiency of a ship. By monitoring the EEOI, the shipowner or operator can establish strategic plans, such as routing, hull cleaning, decommissioning, new building, etc. The key parameter in calculating EEOI is Fuel Oil Consumption (FOC). It can be measured on board while a ship is operating. This means that only the shipowner or operator can calculate the EEOI of their own ships. If the EEOI can be calculated without the actual FOC, however, then the other stakeholders, such as the shipbuilding company and Class, or others who don't have the measured FOC, can check how efficiently their ships are operating compared to other ships. In this study, we propose a method to estimate the EEOI without requiring the actual FOC. The Automatic Identification System (AIS) data, ship static data, and environment data that can be publicly obtained are used to calculate the EEOI. Since the public data are of large capacity, big data technologies, specifically Hadoop and Spark, are used. We verify the proposed method using actual data, and the result shows that the proposed method can estimate EEOI from public data without actual FOC.

A Study on the Basic Design for Platform Support Vessel (PSV) and Hull Form Development for Enhancement of Resistance & Propulsion Performance (해양작업지원선(PSV)의 기본설계 및 저항추진 성능 향상을 위한 선형개선 방안 연구)

  • Yum, Jong-Gil;Kang, Kuk-Jin;Lee, Young-Yeon;Lee, Chun-Ju;Ok, Kun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • Present paper shows the basic design procedure for platform support vessel operating in open sea, and hull form development process. General design concept considering the operating mission, operating sea condition and shipping freight, etc. is explained shortly. For the hull form design, the initial hull form was designed based on the reference PSVs. The resistance and propulsion test results for the initial hull form with twin Azimuth thruster were analyzed and a few items for improvement were derived. At the next stage, main parameters including Length, Cp-curve, Cb, Lcb, etc. were changed totally for the hull form improvement. Furthermore, 3 different bulbous bows for the fore-body design to reduce the wave resistance and after-body design to reduce the residual resistance were carried out. The best hull form among the 3 fore-bodies with same after-body was selected through the comparison of wave resistance calculation results. Twin ducted Azimuth thruster with the smaller propeller diameter than the former were adapted to increase the propulsive efficiency. The final hull form with the twin Azimuth thruster was evaluated to satisfy more than the target design speed 14 knots in sea condition with sea margin 15% at the 5,000kW BHP through the model test in KRISO.

Assessment of greenhouse gas emissions from ships operation at the Port of Incheon using AIS (AIS를 활용한 인천항 선박의 온실가스 배출량 추정)

  • Khan, Sadaqat;Chang, Young-Tade;Lee, Suhyung;Choi, Kyoung-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.65-80
    • /
    • 2018
  • This paper attempts to estimate GHG emissions, primarily $CO_2$ ship emissions, at the port of Incheon in October 2014. This study employed a bottom-up approach based on Automatic Identification System (AIS) data to estimate the total amount of fuel consumption and the total amount of $CO_2$ emission produced as a result of fuel combustion. Using a sample of 330 ships operating at the port of Incheon in Korea, the total amount of $CO_2$ gases emitted from ships in October 2014 were estimated to be 164693.06 tons, with estimated total fuel consumption of 51953.64 tons. General cargo ships were most common type of ships, but they were less polluting compared to passenger ships. The detailed emission estimates by ship type revealed that passenger ships were the most polluting ships (81409.6 tons of emissions), followed by tugboats (37248.4 tons), cargo ships (32154.6 tons), ships used for other activities (9039.1 tons), chemical tankers (4027.06 tons), and fishing ships (814.048 tons), respectively.

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

Development of a Gateway System Between Underwater and Land Network and Real-Sea performance Test (수중-육상 네트워크 연계용 게이트웨이 부이시스템 개발 및 실 해역 성능 검증)

  • Lee, Jeong-Hee;Park, Jong-Won;Park, Jin-Yeong;Seo, Su-Jin;Lim, Young-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1200-1207
    • /
    • 2015
  • A gateway buoy system connects a underwater network to a terrestrial network, which enables to efficiently monitor the underwater network on a land station. In this paper, we introduce an implemented gateway buoy system which relays gathered data from multiple underwater nodes to a land station in a real time. The gateway buoy hardware system is composed of a underwater acoustic modem system, a radio frequency modem system, and a gateway operating system. in additional, we have implemented a land operating program and a land monitoring program for gateway system and states of underwater network, respectively. We also perform real-sea experiments to verify the performance of the gateway buoy system which real-time monitors underwater network states and gateway system states.

Safe Speed Estimation of Arctic Ships considering Structural Safety (구조적 안전성을 고려한 빙해선박의 안전 운항속도 평가)

  • Nho, In Sik;Lim, Seung Jae;Kang, Kuk Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.236-242
    • /
    • 2018
  • Damage due to ice collision is the most serious threat for the structural safety of ships operating in arctic region. Since such hull damages are usually caused by the collision of floating ice at excessive voyage speed of ships, the authorities responsible for the shipping at arctic sea are required to provide the speed limit for safe voyage, so-called safe speed. In countries near arctic ocean, such as Canada and Russia, empirical methods to determine the safe speed of ships based on their long experience of arctic voyage have been established and applied them in the real arctic navigation. However, in Korea, it is not easy to accumulate the arctic voyage experience and related technical database, so it seems to be a realistic approach to adopt a safe voyage speed estimating method in arctic sea based on the ice collision simulation technology using the nonlinear finite element analysis. The aim of this study is to develop a technique for estimating the safe voyage speed of vessels operating at arctic sea through the ice collision analysis, In order to achieve this goal, the standard procedure of the ice collision analysis is dealt with and example analysis was carried out and the results were considered. To investigate the validity of developed method, POLARIS system proposed by IMO was studied for comparison.