• Title/Summary/Keyword: Operating point loss

Search Result 119, Processing Time 0.035 seconds

An optimal design of 4${\times}$4 optical matrix switch (4${\times}$4 매트릭스 광스위치의 최적 설계)

  • Choi, Won-Jun;Hong, Song-Cheol;Lee, Seok;Kim, Hwe-Jong;Lee, Jung-Il;Kang, Kwang-Nham;Cho, Kyu-Man
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.153-165
    • /
    • 1995
  • The design procedure of a GaAs/AlGaAs semiconductor matrix optical switch is presented for a simplified tree architecture in the viewpoint of optical loss. A low loss, 0.537 dB/cm, pin type substrate is designed by considering the loss due to imputity doping at 1.3 $\mu$m wavelength. The operating voltage and the device length of a reversed ${\Delta}{\beta}$ electro-optic directional coupler(EODC) swith which is a cross-point device of the 4${\times}$4 matrix optical switch and the bending loss of rib waveguide are caculated as functions of waveguide parameters and bending parameters. There is an optimum bending radius for some waveguide parameters. It is recommened that higher optical confinement conditions such as wide waveguide width and higher rib-height should be chosen for structural parameters of a low loss and a process insensitive 4${\times}$4 matris optical switch. A 4${\times}$4 optical matrix switch which has a 3 dB loss and a 12 volt operating voltage is designed.

  • PDF

Design Methodology of 500 W Wireless Power Transfer Converter for High Power Transfer Efficiency (500 W 급 무선전력전송 컨버터의 고효율 설계 방법)

  • Kim, Mina;Park, Hwapyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.

The Operating Characteristics of 3kW Utility Interconnected Photovoltaic System (3kW 계통연계형 태양광발전시스템의 운전특성)

  • Kim, Hyung-Seok;Park, Jeong-Min;Na, Jong-Deok;Baek, Hyung-Rae;Cho, Geum-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.201-204
    • /
    • 2004
  • Consider the optimal design for PV system, it is apply to 3kW interconnected electric power PV system, that is a point of reference for 3kW PV the spread residential section system. Through the driving various practical system, we look into that for efficiency of generation and stability of interconnected system. Using obtained data acquisition, It can be suggest that installation and management for system parameter to optimal design maximum generation electric power. PV system have some losses that are variation radiation, shadow, change temperature, unbalanced grid connection, serial circuit loss, MPP deference loss, PCS loss and so forth. Using obtained various performance characteristic result, we can make database in the future, through the this study, we can get the reliance and have regard to spread PV system.

  • PDF

Characteristics of High Power Semiconductor Device Losses in 5MW class PMSG MV Wind Turbines

  • Kwon, Gookmin;Lee, Kihyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.367-368
    • /
    • 2014
  • This paper investigates characteristics of high power semiconductor device losses in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor device of press-pack type IGCT of 6.5kV is considered in this paper. Analysis is performed based on neutral point clamped (NPC) 3-level back-to-back type voltage source converter (VSC) supplied from grid voltage of 4160V. This paper describes total loss distribution at worst case under inverter and rectifier operating mode for the power semiconductor switches. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt snubber and ac input filter are presented. The investigation result shows that IGCT type semiconductor devices generate the total efficiency of 97.74% under the rated condition.

  • PDF

Comparison of Efficiency for Voltage Source and Current Source Based Converter in 5MW PMSG Wind Turbine Systems

  • Kang, Tahyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.357-358
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5MW-class medium voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for voltage source type topology while two-level converter is employed for current source type topology considering the popularity in the industry. In order to match the required voltage level of 4160V with the same switching device of IGCT as in voltage source converter, two active switches are connected in series for the case of current source converter. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt and dv/dt snubber and ac input filter are presented. The comparison result shows that VSC-based wind turbine system has a higher efficiency than that of CSC under the rated operating conditions.

  • PDF

A Study of Reconfiguration for Load Balancing in Distribution Power System (배전계통 부하 균등화를 위한 재구성에 관한 연구)

  • Seo, Gyu-Seok;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1360-1366
    • /
    • 2007
  • In this paper, the load balancing which is one of the distribution power system's operation purposes was studied. Reconfiguration of Distribution power system presents that the configuration is changed by changing the switch on/off status which exists in the system according to the mentioned purpose. Through this method, the load of distribution power system is shown to be balanced. As a characteristic of complicated distribution power system, system is designed by being applied by OOP(Object Oriented Programming) method which connected more flexibly than existing Procedural Programming method, and the process of calculating the distflow and the loss of configurated system is shown. In addition, this paper suggests more efficient method compared by the results of reconfiguration on the purpose of the loss minimization and by the result of distribution power system reconfiguration on the purpose of load balancing. Moreover, it searches for the method to approach the global optimal solution more quickly.

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Operating Temperature and Time of Rate of Rise Heat Detector (차동식 열감지기의 작동온도와 작동시간)

  • 류호철;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 1994
  • Rate of rise heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, simple equations were derived which can be predicted the response time and temperature of the rate of rise heat detector with the results of hot wind tunnel tests and compartment fire experiments.

  • PDF

A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network (신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어)

  • Kang, Sung-Joon;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Study on Thermal Stability Characteristics of Surge Arrester for High Power (전력용 피뢰기의 열안정화 특성)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1142-1145
    • /
    • 2004
  • ZnO surge arresters continuously endure the operating voltages during the operation course, and in the mean time, which need to withstand occasionally transient voltages of lightning and switching overvoltages. Under these voltages, the ZnO varistors inside arresters would have aging phenomena, one important result of aging phenomena is the increasing of resistive currents of varistors, which leads to the increasing of power losses of varistors. And the operating voltage is continuously applied on the ZnO varistors, there is a degradation phenomenon existing in ZnO varistors. When the degradation reaches a certain degree, then the arrester must stop operation. The degradation is related to the applied voltage ratio, the applied voltage ratio is high, the degradation is quickly. When the power loss is higher than the thermal dispersion ability of house of arrester, then the arrester will thermally breakdown. In this study the thermal stability characteristics of surge arresters for high power wil be discussed on the view point of watt losses and thermal breakdown.

  • PDF