• Title/Summary/Keyword: Operating mode of full power

Search Result 49, Processing Time 0.026 seconds

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

Characteristic Analysis of Multi-Phase Interleaved Buck Converter in Discontinuous Inductor Current Mode (불연속 전류모드에서의 다상 교호 강압컨버터의 특성 해석)

  • Jang, Eun-Sung;Shin, Hwi-Beom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2007
  • This paper presents the generalized and explicit expressions for evaluating the performance of the multi-phase interleaved buck converter (IBC) operating in discontinuous inductor current mode (DICM). The full-order averaged model is derived. The generalized transfer functions of interest are presented and the dynamic characteristics are analyzed. The generalized analysis of converter performance is verified through the experimental and simulation results.

Development of Advanced Annunciator System for Nuclear Power Plants

  • Hong, Jin-Hyuk;Park, Seong-Soo;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • Conventional alarm system has many difficulties in the operator's identifying the plant status during special situations such as design basis accidents. To solve the shortcomings, an on-line alarm annunciator system, called dynamic alarm console (DAC), was developed. In the DAC, a signal is generated as alarm by the use of an adaptive setpoint check strategy based on operating mode, and time delay technique is used not to generate nuisance alarms. After alarm generation, if activated alarm is a level precursor alarm or a consequencial alarm, it would be suppressed, and the residual alarms go through dynamic prioritization which provide the alarms with pertinent priorities to the current operating mode. Dynamic prioritization is achieved by going through the system- and mode-oriented prioritization. The DAC has the alarm hierarchical structure based on the physical and functional importance of alarms. Therefore the operator can perceive alarm impacts on the safety or performance of the plant with the alarm propagation from equipment level to plant functional level. In order to provide the operator with the most possible cause of the event and quick cognition of the plant status even without recognizing the individual alarms, reactor trip status tree (RTST) was developed. The DAC and the RTST have been simulated with on-line data obtained from the full-scope simulator for several abnormal cases. The results indicated that the system can provide the operator with useful and compact information fur the earlier termination and mitigation of an abnormal state.

  • PDF

Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom (단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.517-527
    • /
    • 2021
  • This paper presents the phase-shift full-bridge DC-DC converter using the one-chip micom. The proposed converter primary is the full-bridge power topology that operates with the unipolar pulse-width modulation (PWM) by the phase-shift method, and the secondary is the full-bridge full-wave rectifier composed of four diodes. The control of proposed converter is performed by the one-chip micom and its MOSFET switches are driven by the bootstrap circuit. Thus the total system of proposed converter is simple. The proposed converter achieves high-efficiency using the resonant circuit and blocking capacitor. In this paper, first, the power-circuit operation of proposed converter is explained according to each operation mode. And the power-circuit design method of proposed converter is shown, and the software control algorithm on the micom and the feedback and switch drive circuits operating the proposed converter are described, briefly. Then, the operation characteristics of proposed converter are validated through the experimental results of a designed and implemented prototype converter by the shown design and implementation method in this paper. The highest efficiency in the results was about 92%.

Implementation of a High-Power-Factor Single-Stage Electronic Bal last for fluorescent lamps (전단일전력단을 갖는 고역율 형광등용 전자식 안정기 구현)

  • 서철식;박재욱;김해준;노채균;김동희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.123-127
    • /
    • 2001
  • In this paper, prototype high-power-factor single-stage electronic ballast for fluorescent lamps is designed and implemented. A new low cost single stage high power factor electronic ballast for fluorescent lamps is based on integration of two-boost converter and LC type high frequency resonant converter. A ballast is obtained by simple construction, because full bridge rectifier diode is eliminated and simple control circuit is applied. Using two boost converter operating positive and negative half cycle respectively at line frequency (60Hz), operation in discontinuous conduction mode performs high power factor. The experimental results Show the good performance as PF 0.99, $A_{THD}$ 15.4%, and CF 1.65 at Output 63.5W.W.

  • PDF

Design and Implementation of an Optimal Hardware for a Stable Operating of Wide Bandgap Devices (Wide Bandgap 소자의 안정적 구동을 위한 하드웨어 최적 설계 및 구현)

  • Kim, Dong-Sik;Joo, Dong-Myoung;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.88-96
    • /
    • 2016
  • In this paper, the GaN FET based phase-shift full-bridge dc-dc converter design is implemented. Switch characteristics of GaN FET were analyzed in detail by comparing state-of-the-art Si MOSFET. Owing to the low conduction resistance and parasitic capacitance, it is expected to GaN FET based power conversion system has improved performance. However, GaN FET is vulnerable to electric interference due to the relatively low threshold voltage and fast switching transient. Therefore, it is necessary to consider PCB layout to design GaN FET based power system because PCB layout is the main reason of stray inductance. To reduce the electric noise, gate voltage of GaN FET is analyzed according to operation mode of phase-shift full-bridge dc-dc converter. Two 600W phase-shifted full-bridge dc-dc converter are designed based on the result to evaluate effects of stray inductance.

A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE (실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

Comparative Analysis of Charging Modes of Series Resonant Converter for an Energy Storage Capacitor (에너지저장 커패시터의 최적 충전을 위한 직렬공진형 컨버터의 운용 모드 비교)

  • Lee, Byung-Ha;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2012
  • In this paper, charging modes of series resonant converter for a high voltage energy storage capacitor are compared in terms of charging time, peak resonant current, normalized peak resonant current and voltage in each operation mode. Operating principles of the full bridge series resonant converter with capacitor load are explained and analyzed in discontinuous and continuous operation mode. Based on the analysis and simulation result, $0.6{\omega}_r$ < ${\omega}_s$ < $0.75{\omega}_r$ and $1.3{\omega}_r$ < ${\omega}_s$ < $1.4{\omega}_r$ are evaluated to the best range of switching frequency for charging of an high voltage energy storage capacitor. 1.8 kJ/s SRC prototype is assembled with TI 28335 DSP controller and 40 kJ, 7 kV energy storage capacitor. Design rules based on the comparative analysis are verified by experiment.

10kW DC/DC Converter using Modified Series Loaded Resonant Topology (향상된 직렬 부하 공진형 컨버터 토폴로지를 이용한 10kW DC/DC 컨버터)

  • Ahn, Suk-Ho;Gong, Ji Woong;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.215-216
    • /
    • 2012
  • This paper proposes a modified converter topology from the existing loaded resonant converter and describe the development of 10kW(50~500V, 0~ 50A) DC/DC Converter using the proposed topology. The suggested converter, which revised the topology of the converter operating on the CCM(Continuous Conduction Mode) (above resonance), has the advantage of enhancing the efficiency of rated load operation by rapidly increasing the primary side resonant current and by improving the resonance current in a trapezoid shape. The proposed topology is described with analysis of operating mode and designed using PSpice simulation and the points on design to consider when implementing the topology are described. It is verified that the advantages of the proposed topology centered on rated load are effectively highlighted. Experimental results carried out at different condition and its results shows 98.5% efficiency at full load condition.

  • PDF

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF