• Title/Summary/Keyword: Operating mode

Search Result 1,461, Processing Time 0.035 seconds

Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper (새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

DCM Analysis of Solar Array Regulator for LEO Satellites (저궤도 인공위성용 태양전력 조절기의 전류 불연속 모드 해석)

  • Park, Heesung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.593-600
    • /
    • 2016
  • The solar array regulator for low earth orbit satellites controls a operating point of solar array for suppling electric power to the battery and the other units. Because the control object is reversed, the new approach for large and small signal analysis is needed despite using buck-converter for power stage. In this paper, the steady state analysis of solar array regulator is performed in continuous conduction mode and discontinuous conduction mode, and the border condition for each mode is established. Also, the small signal model of solar array regulator is established in discontinuous conduction mode. Experiments are carried on in worst condition which the solar array regulator can face with discontinuous conduction mode. The results show that the solar array regulator is in stable.

Analysis of Parameter Effects on the Small-Signal Dynamics of Buck Converters with Average Current Mode Control

  • Li, Ruqi;O'Brien, Tony;Lee, John;Beecroft, John;Hwang, Kenny
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.399-409
    • /
    • 2012
  • In DC-DC Buck converters with average current mode control, the current loop compensator provides additional design freedom to enhance the converter current loop performance. On the other hand, the current loop circuit elements append substantial amount of complexity to not only the inner current loop but also the outer voltage loop, which makes it demanding to quantify circuit and operating parameter effects on the small-signal dynamics of such converters. Despite the difficulty, it is shown in this paper that parameter effects can be analyzed satisfactorily by using an existing small-signal model in conjunction with a newly proposed simplified alternative. As a result of the study, new insight into average current mode control is uncovered and discussed quantitatively. Measurable experimental results on a prototype averaged-current-mode-controlled Buck converter are provided to facilitate the analytical study with good correlation.

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control (슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어)

  • Chae, Seung-Hoon;Yang, Hyun-Seok;Park, Young-Phil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

INFRA-RPL to Support Dynamic Leaf Mode for Improved Connectivity of IoT Devices (IoT 디바이스의 연결성 향상을 위한 동적 leaf 모드 기반의 INFRA-RPL)

  • Seokwon Hong;Seong-eun Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.151-157
    • /
    • 2023
  • RPL (IPv6 Routing Protocol for Low-power Lossy Network) is a standardized routing protocol for LLNs (Low power and Lossy Networks) by the IETF (Internet Engineering Task Force). RPL creates routes and builds a DODAG (Destination Oriented Directed Acyclic Graph) through OF (Objective Function) defining routing metrics and optimization objectives. RPL supports a leaf mode which does not allow any child nodes. In this paper, we propose INFRA-RPL which provides a dynamic leaf mode functionality to a leaf node with the mobility. The proposed protocol is implemented in the open-source IoT operating system, Contiki-NG and Cooja simulator, and its performance is evaluated. The evaluation results show that INFRA-RPL outperforms the existing protocols in the terms of PDR, latency, and control message overhead.

Fretting-Wear Characteristics of Steam Generator Tubes by Foreign Object

  • Jo Jong Chull;Jhung Myung Jo;Kim Woong Sik;Choi Young Hwan;Kim Hho Jung;Kim Tae Hyung
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.442-453
    • /
    • 2003
  • This study investigates the safety assessment of the potential for fretting-wear damages on steam generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element modelings of U-tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. Also, discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube.

Design of valveless type peristaltic micro-pump (밸브레스 연동(連動) 압전펌프의 설계 및 특성)

  • Oh, Jin-Heon;Jeong, Eui-Hwan;Lim, Jong-Nam;Lim, Kee-Joe;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1301_1302
    • /
    • 2009
  • Recently, there has been increased incessantly an interest in research area on micro-fluidic pump for electronic and biological applications. The proposed pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving valves. And, this piezopump makes up a panel type design. The ATILA simulation was performed to estimate the operating frequency of the vibrating wave mode, to optimize the design conditions of piezopump such as structure, elastic body material, piezoelectric ceramics, and to analyze the distribution of vibration displacement. The best measured value of the pumping rate is about $118{\mu}l$/min under the following parameters : 4-wave mode, 50kHz operating frequency, $200V_p$.

  • PDF

Complex Discrete Systems Graph Simulation

  • Kadirova, Delovar;Kadirova, Aziza
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.263-274
    • /
    • 2015
  • The subject of this work is the complex discrete systems simulation special features with the aid of dynamic graph models. The proposed simulation technique allows to determine the ways for tasks solutions in terms of discrete systems analysis and synthesis of various complication: one-dimensional and multidimensional, steady and unstable, with the pulse elements abnormal operating mode and others. Often complex control systems analysis and synthesis task solutions, via classical approach comes out to be insolvent, because of the computational problems. The application of graph models allows to perform clear and strict characterization and computer procedures automation. The optimal controls synthesis algorithm presented in this paper, transferring the discrete system from target initial state to target final state within the minimum time, allows to consider the zero initial conditions systems, with the initial potential energy, with the control actions limitations and complex pulse elements operating mode.

Automatic P/PI Speed Controller Design for Industry Servo Drives (산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계)

  • 배상규;석줄기;김경태;이동춘
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.616-623
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the quality of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, acceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically performed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.