• Title/Summary/Keyword: Operating fluid

Search Result 1,004, Processing Time 0.026 seconds

Early Predictive Values for Severe Rhabdomyolysis in Blunt Trauma

  • Park, Jung Yun;Kim, Myoung Jun;Lee, Jae Gil
    • Journal of Trauma and Injury
    • /
    • v.32 no.1
    • /
    • pp.26-31
    • /
    • 2019
  • Purpose: Rhabdomyolysis (RB) is a syndrome characterized by the decomposition of striated muscles and leakage of their contents into the bloodstream. Acute kidney injury (AKI) is the most significant and serious complication of RB and is a major cause of mortality in patients with RB. Severe RB (creatine kinase [CK] ${\geq}5,000$) has been associated with AKI. However, early prediction is difficult because CK can reach peak levels 1-3 days after the trauma. Hence, the aim of our study was to identify predictors of severe RB using initial patient information and parameters. Methods: We retrospectively analyzed 1,023 blunt trauma patients admitted to a single tertiary hospital between August 2011 and March 2018. Patients with previously diagnosed chronic kidney disease were excluded from the study. RB and severe RB were defined as a CK level ${\geq}1,000U/L$ and ${\geq}5,000U/L$, respectively. The diagnosis of AKI was based on RIFLE criteria. Results: The overall incidence of RB and severe RB was 31.3% (n=320) and 6.2% (n=63), respectively. On multivariable analysis, male sex (odds ratio [OR] 3.78, 95% confidence interval [CI] 1.43 to 10.00), initial base excess (OR 0.85, 95% CI 0.80 to 0.90), initial CK (OR 2.07, 95% CI 1.67 to 2.57), and extremity abbreviated injury scale score (OR 1.78, 95% CI 1.39 to 2.29) were found to predict severe RB. The results of receiver operating characteristic analysis showed that the best cutoff value for the initial serum CK level predictive of severe RB was 1,494 U/L. Conclusions: Male patients with severe extremity injuries, low base excess, and initial CK level >1,500 U/L should receive vigorous fluid resuscitation.

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing (베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Lee, WonSeok;Park, JiBin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

Design of flow path with 2 inlet and outlets to improve cell performance and prevent cell degradation in Solid Oxide Fuel Cell (SOFC 셀 성능 향상 및 수명 저하 방지를 위한 입구와 출구 2개의 유로 설계)

  • Kim, Dongwoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • Solid oxide fuel cells (SOFCs) is the high efficiency fuel cell operating at high temperatures ranging from 700-1000℃. Design of the flow paths of the fuel and air in SOFCs is important to improve cell performance and prevent cell degradation. However, the uneven distribution of current density in the traditional type having one inlet and outlet causes cell degradation. In this regard, the parallel flow path with two inlet and outlets was designed and compared to the traditional type based on computational fluid dynamics (CFD) simulation. To check the cell performance, hydrogen distribution, velocity distribution and current density distribution were monitored. The results validated that the parallel designs with two inlets and outlets have a higher cell performance compared to the traditional design with one inlet and outlet due to a larger reaction area. In case of uniform-type paths, more uniform current density distribution was observed with less cross-sectional variation in flow paths. In case of contracted and expanded inflow paths, significant improvement of performance and uniform current density was not observed compared to uniform parallel path. Considering SOFC cell with uniform current density can prevent cell degradation, more suitable design of SOFC cell with less cross-sectional variation in the flow path should be developed. This work can be helpful to understand the role of flow distribution in the SOFC performance.

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.

Analysis of Emissions of Agricultural Tractor according to Engine Load Factor during Tillage Operation (엔진 부하율에 따른 트랙터 경운 작업 시 배기가스 분석)

  • Lee, Jun Ho;Jeon, Hyeon Ho;Baek, Seung Yun;Baek, Seung Min;Kim, Wan Soo;Siddique, Md. Abu Ayub;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.54-61
    • /
    • 2022
  • This is a basic study analyzing emissions of an agricultural tractor during tillage operations. In this study, CO, THC, NOx, and PM considered as emission factor were analyzed during plow and rotary tillage operation by the tractor. Engine torque and rotational speed were measured through ECU. Engine power was calculated using engine torque and rotational speed. The emissions was calculated based on the number of units, rated power, load factor, and operating time. Results showed that the load factor was calculated almost twice, which was higher than 0.48. It was also observed that the emission of the tractor was variable for different agricultural operations because tractor loads were different based on operations. There was a difference in emissions due to differences in plow and rotary working hours. To estimate the emission of agricultural tractor based field operations in detail, it is necessary to consider TAF (Transient Adjustment Factor) and DFA (Deterioration factor). In the future, TAF and DFA will be considered to estimate emissions of the agricultural tractor. Finally, results of this study can contribute to the literature to estimate tractor emissions accurately.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

Evaluation of exhaust emissions factor of agricultural tractors using portable emission measurement system (PEMS) (PEMS를 이용한 농업용 트랙터의 배기가스 배출계수 평가)

  • Wan-Soo Kim;Si-Eon Lee;Seung-Min Baek;Seung-Yun Baek;Hyeon-Ho Jeon;Taek-Jin Kim;Ryu-Gap Lim;Jang-Young Choi;Yong-Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.15-24
    • /
    • 2023
  • The aim of this study was to measure and evaluate the exhaust emission factors of agricultural tractors. Engine characteristics and three exhaust emissions (CO, NOx, PM) were collected under actual agricultural operating conditions. Experiments were performed on idling, driving, plow tillage, and rotary tillage. The load factor (LF) was calculated using the collected engine data, and the emission factor was analyzed using the LF and exhaust emissions. The engine characteristics and exhaust emissions were significantly different for each working condition, and in particular, the LF was significantly different from the currently applied 0.48 LF. The data distribution of exhaust emissions was different depending on the engine speed. In some conditions, the emission factor was higher than the exhaust emission standards. However, since most emission limit standards are values calculated using an engine dynamometer, even if the emission factor measured under actual working conditions is higher, it cannot be regarded as wrong. It is expected that the results of this study can be used for the inventory construction of a calculation for domestic agricultural machinery emissions in the future.

Study of the Propeller Cavitation Performance Improvement Through the Stern Appendage Modification (선미 부가물 수정에 따른 프로펠러 캐비테이션 성능 향상 연구)

  • Jong-Woo Ahn;Young-Ha Park;Gun-Do Kim;Bu-Geun Paik;Han-Shin Seol;Il-Ryong ParK
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In order to improve the propeller cavitation performance composed of Cavitation Inception Speed (CIS), cavitation extent and pressure fluctuation, it needs to improve the wake distribution that flows into the propeller. The warship propeller cavitation is strongly influenced by the wake created at the V-strut of various appendages. The inflow characteristics of the V-strut were investigated using Computational Fluid Dynamics (CFD) and the twisted angles of the V-strut were aligned with upstream flow. The resistance and self-propulsion tests for the model ship with the existing and modified V-struts were conducted in Towing Tank (TT), and wake distribution, CIS, cavitation observation and pressure fluctuation tests were conducted in Large Cavitation Tunnel (LCT). The propeller behind the modified V-strut showed better cavitation characteristics than that behind the existing V-strut. Another model test was conducted to investigate rudder cavitation performance by the change of the V-strut. The rudder cavitation characteristics were not improved by the change of the operating conditions. On the basis of the present study, it is thought that the stern appendages for better propeller cavitation performance would be developed.