• Title/Summary/Keyword: Operating control system

Search Result 3,090, Processing Time 0.033 seconds

An implementation and performance analysis for robot control software under real-time operating systems (실시간 운영체제를 이용한 로봇제어기 소프트웨어의 구현 및 성능 분석)

  • 손승우;이기동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.375-378
    • /
    • 1996
  • Robot control software is a hard real-time system that must output the planned trajectory points within an explicit short time period. In this paper, we present a design and implementation method for robot control software using commercial real-time operating systems, RTKemel 4.5. Therefore, various robot motions, efficient user interface, and system failure check are easily implemented by using multitasking function, intertask communication mechanism, and real-time runtime libraries of RTKernel. The performance analysis of commercial real-time operating system for robot control is presented based on Timed Petri net(TPN) and we can use these results to design an optimal system.

  • PDF

Development of a motion system operating software for a driving simulator (차량 시뮬레이터의 운동시스템 구동소프트웨어 개발)

  • 박경균;박일경;조준희;이운성;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • This paper describes the operating software of a motion system developed for a driving simulator, consisting of a six degree of freedom Stewart platform driven hydraulically. The drive logic, consisting of an washout algorithm, inverse kinematic analysis, and a control algorithm, has been developed and applied for creating high fidelity motion cues. The basic environment of the operating software is based on LabVIEW 4.0 and DLL modules compiled by Fortran.

  • PDF

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF

A study on the optimum control of refrigerator with on-off control system (On-off 제어계통을 갖는 냉동기의 최적제어에 관한 연구)

  • Ha, J.S.;Kim, W.N.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.317-327
    • /
    • 1985
  • In the case of temperature control of air conditioning and refrigerating system, it is possible to operate the system continuously by controlling the cooling capacity of refrigerating machines. But on-off control system has been adopted for refrigerating system which has more large capacity than that required to remove the generated heat. In this on-off control system, it can be considered that there exists some optimum condition for the refrigerating capacity, operating cycle, running hour, and the temperature difference between thermostat setting value and real one. In this paper, an equation was derived to express the temperature variation of the refrigerated object (Nybrine) and later two evaluating functions were derived. One is for the temperature difference and another is for operating cycle and running hour. The weighted sum of these two functions is defined as the criterion function for the evaluation of the control performance of the system, and then the optimum running condition is investigated in the sense of minimizing the criterion function. Experiments showed that the heat balance equation derived for the temperature variation and the estimation of the time constant of the refrigerated system are appropriate. By conclusion, if a proper weighting factor D is selected, the optimum conditions exist for the refrigerating capacity, running hour, and operating cycle in the on-off temperature control of the refrigerating system.

  • PDF

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

Development of Operation System for Network of Multiple UAVs (복수 무인기 네트워크 통합 운영 시스템 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1042-1051
    • /
    • 2011
  • In this paper, a total operating environment equipped with onboard wireless communication systems and ground-based mission control systems is proposed for simultaneous operation of multiple UAVs. A variety of operating structures are studied and classified systematically based on types and usages of the components. For each operating system, the strength, weakness and reliability aspects are investigated. Based on these results, a proper operating system configuration is determined and components are developed for mission formation flight. Proposed system can make a formation flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperate several missions.

Preventive and Emergency Control of Power System for Transient Stability Enhancement

  • Siddiqui, Shahbaz A.;Verma, Kusum;Niazi, K.R.;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • This paper presents preventive and emergency control measures for on line transient stability (security) enhancement. For insecure operating state, generation rescheduling based on a real power generation shift factor (RPGSF) is proposed as a preventive control measure to bring the system back to secure operating state. For emergency operating state, two emergency control strategies namely generator shedding and load shedding have been developed. The proposed emergency control strategies are based on voltage magnitudes and rotor trajectories data available through Phasor Measurement Units (PMUs) installed in the systems. The effectiveness of the proposed approach has been investigated on IEEE-39 bus test system under different contingency and fault conditions and application results are presented.

Development Of Controller Area Operating System For Uniform Developing Environment (단일개발환경을 위한 제어용 실시간 운영체제의 개발)

  • Park, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.71-74
    • /
    • 1996
  • The concept of uniformity in control implementation is exploded for improving efficiency of design procedure. A controller area operating system which includes real time kernel and control specific shell are developed. Three examples are discussed for the validation of tile system.

  • PDF

The Position of an Arago Disk System using Fuzzy Logic Control Technique (퍼지제어 기법을 이용한 아라고 원판 시스템의 위치 제어에 관한 연구)

  • Mun, Sang-Ik;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.709-711
    • /
    • 1999
  • In this paper, Fuzzy Logic Controller was Designed for the Degree control of Arago's disk system. Arago's disk system is an application of Arago's disk phenomenon which is the operating principle of induction motor. Since the Arago's disk system varies to stable region. maginally stable region, unstable region according to the degree of bar respectively, it is a sutable system which can be evaluate an efficiency of the system. While an existing controller which was designed using linearized system modeling could control the system on only one operating point, fuzzy logic controller has the advantage in showing good response for multi-operating points because it does not need system modeling.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF