• Title/Summary/Keyword: Operating State

Search Result 1,750, Processing Time 0.027 seconds

Development of an Intelligent Power Plant Operating State Monitoring System (발전소 설비 운영상태 지능감시 시스템 개발)

  • Hong, Chang-Ho;Kim, Seok-Hyun;Lee, Seung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • For safe and stable operations of power plants, it is essential to monitor closely crucial measurement values related to power plant trips. In this paper, an intelligent power plant operating state monitoring technique enabling the operating crew member to monitor conveniently the status of the important measurement values and to perceive almost instantly the significance of the implications of those measurement values is developed. The proposed technique is called a "POST(Plant Operating State Tracking) Chart" technique and provides the foundations in developing an intelligent and integrated power plant operating state monitoring support system called the "P-OASIS"(Plant Operation Assessment and Support Intelligent System). The P-OASIS is applied to a thermal power plant of 500[MW] capacity and exhibited impressive performances.

Experimental Study of the Effect of the Reservoir on CPL Operation (CPL의 운전에 미치는 레저버의 영향에 대한 실험적 연구)

  • Hwang, Hyung-Jin;Joung, Wuk-Chul;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2033-2038
    • /
    • 2008
  • The CPLs(capillary pumped loops) are two phase heat transfer devices which enable active control of operating temperature of heat absorbing elements(or evaporators). Although the CPLs gain increasing interests as promising heat transfer devices for future missions such as spacecraft and commercial applications, their intrinsic complexity in operating principles makes the widespread use of these devices difficult. The key element and main cause of this complexity in operating principles is the two phase hydrodynamic accumulator or reservoir which controls the saturation state of the remaining loop and, particularly for the CPLs, it is separated from the evaporator. Thus, in this study, the operating characteristics of the CPL is investigated experimentally and theoretically. Mainly focusing on the role of reservoir the thermodynamic operating principle is examined first and the experimentally obtained steady state and transient state operating characteristics are discussed in detail.

  • PDF

A Method to Define Steady-State Curves for Variable-Speed Variable-Pitch Wind Turbine (가변속도-가변피치 풍력터빈의 정상상태 곡선 결정 방법)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.894-899
    • /
    • 2009
  • Aerodynamic power and torque of wind turbine are highly nonlinear and its operation mode depends on control strategies. Therefore, it is essential to define steady-state curves for the purpose of control and operation of wind turbine system. The steady-state curves of wind turbine can be defined by determining its operating points. In this paper, an algorithm to determine operating points of variable-speed variable-pitch wind turbine is presented on the basis of pitch-to-feather control strategy. And this algorithm is applied to obtain steady-state curves for an 1.5MW wind turbine.

Balancing between Supply and Demand in Supply Chain Operating (공급사슬 운영에서의 수요와 공급 균형에 관한 연구)

  • Jo Min-Gwan;Lee Yeong-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.371-374
    • /
    • 2004
  • The ultimate purpose of Supply Chain Management (SCM) is maximizing the profits of the overall Supply Chain (SC) through increasing customer satisfaction and decreasing operating cost. It can be successfully accomplished only when SC system balances demands with supply activities coordinated by aggregate planning, mid-term level of Supply Chain Planning(SCP). However, the existing measures to mainly estimate the specific function of SCM are not enough to evaluate the state of SC with respect to the balance between supply and demand in operating. To solve this problem, we develop a new SC performance measure, Balancing Point, using momentum concept. a fundamental knowledge of physics. Momentum concept can explain the relation among objects so that it can consider the balance between supply and demand in SC operating. The developed measure can not only consider the current state of the SC system but also take planned but not executed supply activities and upcoming demands into account. Therefore, using Balancing point, we can be aware of the unbalanced state of SC in advance.

  • PDF

Study of combinations of site operating states for multi-unit PSA

  • Yoo, Heejong;Jin, Kyungho;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3247-3255
    • /
    • 2021
  • As Probabilistic Safety Assessments (PSAs) are thoroughly conducted for the Site Operating States (SOSs) for a single unit, multi-unit Probabilistic Safety Assessments (MUPSAs) are ongoing worldwide to address new technical challenges or issues. In South Korea, the determination of the site operating states for a single site requires a logical approach with reasonable assumptions due to the fact that there are 4-8 operating units for each site. This paper suggests a simulation model that gives a reasonable expectation of the site operation states using the Monte-Carlo method as a stochastic approach and deterministic aspects such as operational policies. Statistical hypothesis tests were conducted so that the reliance of the simulation results can be guaranteed. In this study, 7 units of the Kori site were analysed as a case study. The result shows that the fraction of full power for all 7 units is nearly 0.45. For situations when more than two units are not in operation, the highest fraction combination was obtained for Plant Operation State (POS) 8, which is the stage of inspection and repairment. By entering various site operation scenarios, the simulation model can be used for the analysis of other site operation states.

A Necessary and Sufficient Condition for Multiplicity of Steady-State Solutions of Point-Kinetics Reactor Feedback Svstems (점동특성시스템이 다중의 정상상태해를 갖기 위한 필요충분조건)

  • Yang, Chae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.463-469
    • /
    • 1995
  • The point-kinetics reactor system which is subject to feedback effects may have multiple steady-state solutions for some operating conditions. A necessary and sufficient condition for multiple steady-state solutions of the point-kinetics reactor feedback system for an external input reactivity is obtained through their theoretical approach. If and only if the steady-state feedback reactivity of the reactor system is not strictly monotonic on some values of the feedback variables, then the reactor system has multiple steady-state solutions for the equilibrium operating conditions corresponding to the values of the feedback variables. Also, if and only if the steady--state feedback reactivity is strictly monotonic on all the feedback variables, then the reactor system has only one steady-state solution for all the operating conditions.

  • PDF

Seismic Reliability Evaluation of Electric Power Transmission Systems Considering the Multi-state of Substations (변전소의 다중상태를 고려한 송전시스템의 내진 신뢰성 평가)

  • 고현무;박영준;박원석;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.66-73
    • /
    • 2003
  • The technique for the seismic reliability evaluation of the electric power network is presented. In the previous study, the state of the substations was represented by the bi-state which is classified as failure or survival. However, the hi-state model can result in oversimplified analysis, because substations are worked by the parallel operating system. In this paper, Considering the characteristics of the parallel operating system, the damage of the substation is expressed by the multi-state for the more realistic seismic reliability evaluation. Using Monte-Carlo simulation method, the seismic reliability for Korean 345㎸ electric power network is evaluated. Analysis results show that reliability levels of the network by the multi-state analysis is higher than that by the hi-state analysis and the electric power network in southeastern area of the Korean Peninsular may be vulnerable to earthquakes.

  • PDF

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

Eigenvalue Analysis of Power Systems with Non-Continuous Operating Elements by the RCF Method : Modeling of the State Transition Equations (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 고유치 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this paper, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition equations. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

Modeling of the State Transition Equations of Power Systems with Non-continuously Operating Elements by the RCF Method

  • Kim, Deok-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.344-349
    • /
    • 2005
  • In conventional small signal stability analysis, the system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of the state matrix. However, when a system contains switching elements such as FACTS equipments, it becomes a non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is performed by means of eigenvalue analysis of the system's periodic transition matrix based on the discrete system analysis method. In this paper, the RCF (Resistive Companion Form) method is used to analyze the small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of the power system, generator, controllers and FACTS equipments including switching devices should be modeled in the form of state transition equations. From this state transition matrix, eigenvalues that are mapped into unit circles can be computed precisely.