• Title/Summary/Keyword: Opening energy

Search Result 511, Processing Time 0.024 seconds

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

${\ll}$영추(靈樞).근결(根結)${\gg}$ 에 대한 연구(硏究)

  • Geum Gyeong-Su;Jeong Heon-Yeong;Kim Nam-Su;Jang Jong-Yeol
    • Journal of Korean Medical classics
    • /
    • v.13 no.1
    • /
    • pp.74-101
    • /
    • 2000
  • Geungyul(根結) means roots and nodes of meridians. If human body gets damaged by energy which each seasons has, the meridians get some troubles. Healing for symptom, meridians consist of root, stay, follow, inpouring and node of acupuncture points should be in harmony. 1. This chapter explain roots and node parts of each meridian, acupuncture points name and root, stay, follow, inpouring of acupuncture points which in arm and leg of three Yin and Yang. 2. The opening, closing, axis function, the symptom, and the needling of both meridians of Yin and Yang are explained. 3. The method that predicts the rise-and-fall of visceral energy and the time of death by using an order of pulse and intermittent pulse is explained. 4. It is explained that since the physical condition of the rich and the poor are different, the method using a needling for each person to be healed, such as the deep-and-shallow and the quick-and-slow, are different. 5. It is explained that the excess and the deficiency in the energy of shape should be considered when a acupuncture is given.

  • PDF

Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings

  • Deng, Ting;Yu, Xianfeng;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.331-352
    • /
    • 2015
  • A series of wind tunnel tests were conducted on tapered super high-rise buildings with a square cross section by applying synchronous pressure measurement technology. The effects of global strategy of chamfered modification on aerodynamic loads and wind-induced responses were investigated. Moreover, local aerodynamic strategies of opening a ventilation slot in the corner of equipment and refuge floors were carried out. Results show that the global strategy of tapered elevation increased the vortex shedding frequency, but reduced vortex shedding energy, leading to reduction of across-wind aerodynamic loads and responses. Chamfered modification suppressed the across-wind vortex shedding effect on tapered buildings. Opening the ventilation slot further suppressed the strength of vortex shedding and reduced the residual energy related to vortex shedding in aerodynamic loads of chamfered buildings. Finally, the optimized locations of local aerodynamic strategies were suggested.

Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

  • Jo, Yun-A;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.247-256
    • /
    • 2016
  • An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Atomization Characteristics Experiment of Pintle Type Nozzle by the PDPA (PDPA에 의한 Pintle형 노즐의 미립화 특성실험 -식물유를 중심으로-)

  • 나우정;유병구;정진도
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • A simplified experiment was performed to figure out the atomization characteristics of highly viscous liquid of rice-bran oil by applying ultrasonic energy to improve the atomization of spray droplets. A spray system, an ultrasonic system, and three kinds of pintle-type nozzles(pin-edge angle: 5 , 10 , 15 ) were manufactured. To investigate the effects of ultrasonic energy on the atomization of a highly viscous liquid, a phase doppler particle analyzer was used for the measurement and calculation of spray droplets data. Nozzle opening pressures were chosen of 3 levels, i.e, 10, 13, 16 MPa. As a result, it could be concluded that the ultrasonic energy was effective to improve the spray atomization when applied to the fuel by means of 3 different nozzles because of the effects of the liquid fuel cavitation and relaxation between molecules caused by ultrasonic energy. The improvement rate of the spray atomization by the ultrasonic spray atomization by the ultrasonic spray compared with the conventional spray was about 10% increase in the case of pintle type nozzles. With the increase of pin-edge angles the distribution lines by nozzle opening pressures are declined for both conventional and ultrasonic sprays. This means that the increase of the pin-edge angle improves the atomization of sprays.

  • PDF

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.

The Role of Innovative Energy Public Firms' Channels according to Shale Gas for E-Convergence Economy.

  • Seo, Dae-Sung;Kim, Seung-Ryeol
    • Journal of Distribution Science
    • /
    • v.14 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • Purpose - The E-convergence economy is requested with the economic change of the diverse energy supplies, according to the exploits of Shale gas. By analyzing the electric energy supply and demand in accordance with the various cases, it has proved indirectly to create a convergence economy. Research design, data, and methodology - The research design would make realize its potential change with which government or companies have focused on the energy objection between Shale gas and Electric vehicles. Results - The paper suggests that Shale gas has expanded with the emphasis on the Electrical convergence economy or EVs. Due to these results, they also show why it should not be delayed in the development of shale gas and electric vehicles at the same time. Conclusions - All this is from the reason of opening the E-convergence economy over time. It is required that Korea should prepare E-convergence economy. Public regional energy should be present through the consistent selection of development for energy linking E-economy and E-trans distribution.

The Effect of Energy Transport using Capillary Pumped Loop with PVA sponge Wick (PVA 스폰지 윅을 갖는 Capillary Pump Loop의 에너지 전달효과)

  • Jun, C.H.;Jang, Y.S.;Kim, O.G.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.21-28
    • /
    • 1999
  • This study was carried out to investigate the effect of energy transport using capillary pumped loop with PVA sponge wick. The results obtained from this study are as follows. The configuration of capillary pumped loop was adequate and PVA sponge was of great use for the manufacture of capillary pump. The energy transport reached maximum when the working fluid amount was 750cc the wall temperature distribution indicated high values through out the entire length of the pipe. As the opening of a nozzle was increased, energy transport was increased but the effect was decreased.

  • PDF