• Title/Summary/Keyword: Opening Pressure

Search Result 637, Processing Time 0.029 seconds

Analysis of Dynamic Characteristics of Pneumatic Driving Solenoid Valve (공압구동용 솔레노이드밸브의 동특성 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.731-736
    • /
    • 2011
  • A pneumatic driving solenoid valve operates pneumatic control devices by opening/closing operating flow passage when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of pneumatic driving solenoid valve is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, drainage seat, rate of sealing diameter, volume of control cavity. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF

A Study on the Reinforcement Effects of Fully-Grouted Rock Bolts (전면접착형 록볼트의 보강효과에 관한 연구)

  • 정해성;문현구
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.194-203
    • /
    • 1999
  • The axial stress in rock bolt, the shear stress at the bolt-grout interface and the neutral point are analyzed to understand the mechanical behavior of rook bolt. To analyze the support effects of rock bolt in various geological conditions, numerical analyses are performed with regard to bolt spacing and bolt length in several geological conditions and tunnel sizes. Through the numerical analyses, the distributions of maximum tensile stress and shear stress are determined. And the excavation width of underground opening affects the position of the neutral point. In the circular opening supported by pattern bolting, the increase of confining pressure, the reduction of plastic zone, and that of ground displacement are determined by using the radial stress increase ratio, the plastic zone reduction ratio and the displacement reduction ratio respectively. The results of this study can be applied to a practical tunnel design through understanding of the trends of these support effects.

  • PDF

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

Electromyographic evidence for a gestural-overlap analysis of vowel devoicing in Korean

  • Jun, Sun-A;Beckman, M.;Niimi, Seiji;Tiede, Mark
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.153-200
    • /
    • 1997
  • In languages such as Japanese, it is very common to observe that short peripheral vowel are completely voiceless when surrounded by voiceless consonants. This phenomenon has been known as Montreal French, Shanghai Chinese, Greek, and Korean. Traditionally this phenomenon has been described as a phonological rule that either categorically deletes the vowel or changes the [+voice] feature of the vowel to [-voice]. This analysis was supported by Sawashima (1971) and Hirose (1971)'s observation that there are two distinct EMG patterns for voiced and devoiced vowel in Japanese. Close examination of the phonetic evidence based on acoustic data, however, shows that these phonological characterizations are not tenable (Jun & Beckman 1993, 1994). In this paper, we examined the vowel devoicing phenomenon in Korean using data from ENG fiberscopic and acoustic recorders of 100 sentences produced by one Korean speaker. The results show that there is variability in the 'degree of devoicing' in both acoustic and EMG signals, and in the patterns of glottal closing and opening across different devoiced tokens. There seems to be no categorical difference between devoiced and voiced tokens, for either EMG activity events or glottal patterns. All of these observations support the notion that vowel devoicing in Korean can not be described as the result of the application of a phonological rule. Rather, devoicing seems to be a highly variable 'phonetic' process, a more or less subtle variation in the specification of such phonetic metrics as degree and timing of glottal opening, or of associated subglottal pressure or intra-oral airflow associated with concurrent tone and stricture specifications. Some of token-pair comparisons are amenable to an explanation in terms of gestural overlap and undershoot. However, the effect of gestural timing on vocal fold state seems to be a highly nonlinear function of the interaction among specifications for the relative timing of glottal adduction and abduction gestures, of the amplitudes of the overlapped gestures, of aerodynamic conditions created by concurrent oral tonal gestures, and so on. In summary, to understand devoicing, it will be necessary to examine its effect on phonetic representation of events in many parts of the vocal tracts, and at many stages of the speech chain between the motor intent and the acoustic signal that reaches the hearer's ear.

  • PDF

RELAP5/MOD3 Analysis for Hydraulic Load Calculation of the SEBIM POSRV Discharge Riping System (SEBIM POSRV 방출배관계통의 수력학적 하중계산을 위한 RELAP5 / MOD3 분석)

  • Han, Kee-Soo;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • The sudden discharge of the loop seal water, which is present upstream of the SEBIM POSRV, creates large momentum and inertia forces on the downstream of the discharge piping system. This study provides the procedures and results of analysis of the thermal-hydraulic transient in the SEBIM POSRV discharge piping during the valve opening. The analysis is peformed by RELAP5/MOD3. The appropriate modeling of the discharge piping system, SEBIM POSRV opening characteristics, and loop seal water discharge for the RELAP5/MOD3 analysis is suggested. Also performed is the sensitivity study for the selection of proper options for the junction and volume control. flags. The analysis results demonstrate the adequacy of the RELAP5/HOD3 for the thermal-hydraulic transient analysis of the loop seal water discharge of the SEBIM POSRV discharge piping system. From the sensitivity analysis results, it is shown that the smooth area change option with reasonable geometric pressure drop distribution, non-equilibrium option, and proper time step should be selected for loop seal water discharge analysis.

  • PDF

Simulation of Water Flows in Multiple Columns with Small Outlets

  • Suh Yong-Kweon;Li Zi Lu;Jeong Jong-Hyun;Lee Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1765-1772
    • /
    • 2006
  • High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycletime. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

Longitudinal management of recurrent temporomandibular joint ankylosis from infancy to adulthood in perspective of surgical and orthodontic treatment

  • Lim, Seung-Weon;Choi, Jin-Young;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.413-426
    • /
    • 2019
  • This study was performed to describe the longitudinal management of recurrent temporomandibular joint (TMJ) ankylosis from infancy to adulthood in perspective of surgical and orthodontic treatment. A 2-year-old girl was referred with chief complaints of restricted mouth opening and micrognathia due to bilateral TMJ ankylosis. For stage I treatment during early childhood (6 years old), high condylectomy and interpositional arthroplasty were performed. However, TMJ ankylosis recurred and symptoms of obstructive sleep apnea (OSA) developed. For stage II treatment during early adolescence (12 years old), gap arthroplasty, coronoidectomy, bilateral mandibular distraction osteogenesis, and orthodontic treatment with extraction of the four first premolars were performed. However, TMJ ankylosis recurred. Because the OSA symptoms reappeared, she began to use a continuous positive airway pressure device. For stage III treatment after completion of growth (20 years old), low condylectomy, coronoidectomy, reconstruction of the bilateral TMJs with artificial prostheses along with counterclockwise rotational advancement of the mandible, genioglossus advancement, and orthodontic treatment were performed. After stage III treatment, the amount of mouth opening exhibited a significant increase. Mandibular advancement and ramus lengthening resulted in significant improvement in the facial profile, Class I relationships, and normal overbite/overjet. The OSA symptoms were also relieved. These outcomes were stable at the one-year follow-up visit. Since the treatment modalities for TMJ ankylosis differ according to the duration of ankylosis, patient age, and degree of deformity, the treatment flowchart suggested in this report could be used as an effective guideline for determining the appropriate timing and methods for the treatment of TMJ ankylosis.

Comparison of Clinical Characteristics and Effects of Modified Jaw Thrust Maneuver During Drug-Induced Sleep Endoscopy (DISE) between Positional and Non-Positional Obstructive Sleep Apnea Patients

  • Moon, Ji Seung;Koo, Soo Kweon;Kim, Young Joong;Lee, Sang Hoon;Lee, Ho Byoung;Park, Geun Hyung;Lee, Sang Jun
    • Journal of Clinical Otolaryngology Head and Neck Surgery
    • /
    • v.29 no.2
    • /
    • pp.190-197
    • /
    • 2018
  • Background and Objectives : Positional OSAS is characterized by an apnea-hypopnea index (AHI) score >5, which, while sleeping in the supine position, is double that in non-supine position. This study was performed to compare the clinical characteristics of positional OSAS and non-positional OSAS patients, and the effects of the modified jaw thrust maneuver during drug-induced sleep endoscopy (DISE) between positional OSAS and non-positional OSAS patients. Materials and Methods : 68 positional OSAS patients and 19 non-positional OSAS patients were included. They all underwent full-night polysomnography and DISE. The modified jaw thrust maneuver was introduced during DISE. Airway structural changes induced by the modified jaw thrust maneuver were evaluated and documented. Results : There were no statistically significant differences in Friedman stage or tonsil grade, body mass index, Epworth sleepiness scale (ESS) score, blood pressure, AHI, or obstructive pattern between the positional and non-positional OSAS patients. However, mean arterial oxygen saturation (SaO2), lowest SaO2, and total arousal index values were more severe in the non-positional OSAS patients. After introduction of the modified jaw thrust maneuver, retrolingual level obstruction showed a tendency toward a higher rate of airway opening in positional OSAS patients than in non-positional OSAS patients. Conclusions : The effects of a mandibular advancement device (MAD) can be estimated by carrying out a modified jaw thrust maneuver during DISE. The tendency toward a higher rate of airway opening in positional OSAS patients than non-positional OSAS patients in retrolingual level obstruction after jaw thrust maneuver introduced during DISE may be clinically important for MAD.