• Title/Summary/Keyword: Opening Pressure

Search Result 637, Processing Time 0.031 seconds

Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending (In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Performance Analysis of a Refrigeration System with Parallel Control of Evaporation Pressure (증발압력 병렬제어 냉동시스템의 성능해석)

  • Lee, Jong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.567-573
    • /
    • 2008
  • The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an evaporation pressure regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted.

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng;Du, Chengbin;Zhao, Wenhu;Zhang, Deheng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.553-562
    • /
    • 2021
  • In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

Peak Net Pressure Coefficients for Cladding Design of Retractable Dome Roofs according to Rise-Span Ratio (라이즈-스팬 비에 따른 개폐식 돔 지붕의 외장재 설계용 피크순압력계수)

  • Cheon, Dong-Jin;Kim, Yong-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.101-109
    • /
    • 2024
  • In this study, the characteristics of wind pressure distribution on circular retractable dome roofs with a low rise-to-span ratio were analyzed under various approaching flow conditions by obtaining and analyzing wind pressures under three different turbulent boundary layers. Compared to the results of previous studies with a rise-to-span ratio of 0.1, it was confirmed that a lower rise-to-span ratio increases the reattachment length of the separated approaching flow, thereby increasing the influence of negative pressure. Additionally, it was found that wind pressures varied significantly according to the characteristics of the turbulence intensity. Based on these experimental results, a model for peak net pressure coefficients for cladding design was proposed, considering variations in turbulence intensity and height.

A Study on the Pulsation Pressure Reduction for the Hydraulic System of Medium-large Excavator (중대형 굴삭기 유압시스템의 압력 맥동 저감 연구)

  • Kim, Young-Hyun;Joo, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • With hydraulic noise test facility, a variety of tests were performed to investigate the pulsation pressure generation mechanism and its transmission characteristics and to derive the noise control methodology. Many experiments were carried out by changing average pressure, flow rate, pump speed, hose length and MCV spool condition. From the test results, the correlations between pulsation pressure and other design parameters, such as static pressure, flow rate and MCV spool opening area and length of hose, were found out. And also each contribution factors were evaluated from the regression analysis. By changing hose length, the pulsation pressure resonance phenomenon was investigated. In order to find out the pulsation pressure reduction measures pulsation pressure analysis, such as pulsation pressure of hydraulic pump itself and pulsation pressure of hydraulic system, by using AMESim were studied. In addition hydraulic silencer was developed based on the Helmholtz resonator. And its performance was evaluated by installing the silencer at the excavator.

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

Analysis on Volumetric Efficiency and Torque Characteristics Using Inlet Port Pressure in SI Engines (흡기포트압력을 이용한 SI엔진의 체적효율 및 토크 성능 분석)

  • 이영주;홍성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1408-1418
    • /
    • 1992
  • The valve timing and intake system in SI engine is chosen in order to get the maximum performance at the target rpm. This is a compromise and the performance reduction is expected in a certain rpm range. Therefore, to accomplish the possible engine capacity all over the operation ranges, it is required to investigate the effects of intake system and valve timing on engines more thoroughly. In this paper, it was attempted to examine closely the combined effects on the torque and the volumetric efficiency due to the change of valve timing and intake system dimensions. For this, the inlet port pressure was chosen as a primary parameter to represent engine performance characteristics together with surge tank pressure and induction pressure as secondaries. The inlet port pressure was analyzed in connection with both the secondaries and the performance data. Especially the relation between the inlet port pressure and the torque and volumetric efficiency was investigated on the operating conditions. In this experiment, it was acquired that the performances at specific rpm range could be improved by the combinations of valve timing and intake system. Then it was verified that pressure at a intake system contained useful data for the engine performance. By the analysis of inlet port pressure with the others, it was obtained that the properties of the torque and the volumetric efficiency due to the change of valve timing and intake conditions were able to be defined by the average and the maximum inlet port pressures, the pressure near before the intake valve closing(IVC) point as well as the pressure at IVC point during the intake valve opening duration. These results could be applied to almost all over the experimental conditions.

Microinjection of Glutamate into the Amygdala Modulates Nociceptive and Cardiovascular Response in Freely Moving Rats

  • Ahn, Dong-Kuk;Kim, Yun-Sook;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.687-693
    • /
    • 1998
  • This study was performed to examine the mean arterial pressure and nociceptive jaw opening reflex after microinjection of glutamate into the amygdala in freely moving rats, and to investigate the mechanisms of antinociceptive action of amygdala. Animals were anesthetized with pentobarbital sodium (40 mg/kg, ip). A stainless steel guide cannula (26 gauge) was implanted in the amygdala and lateral ventricle. Stimulating and recording electrodes were implanted into each of the incisor pulp and anterior digastric muscle. Electrodes were led subcutaneously to the miniature cranial connector sealed on the top of the skull with acrylic resin. After 48 hours of recovery from surgery, mean arterial pressure and digastric electromyogram (dEMG) were monitored in freely moving rats. Electrical shocks (200 ${\mu}sec$ duration, $0.5{\sim}2$ mA intensity) were delivered at 0.5 Hz to the dental pulp every 2 minutes. After injection of 0.35 M glutamate into the amygdala, mean arterial pressure was increased by $8{\pm}2$ mmHg and dEMG was suppressed to $71{\pm}5%$ of the control. Injection of 0.7 M glutamate elevated mean arterial pressure by $25{\pm}5$ mmHg and suppressed dEMG to $20{\pm}7%$ of the control. The suppression of dEMG were maintained for 30 minutes. Naloxone, an opioid receptor antagonist, inhibited the suppression of dEMG elicited by amygdaloid injection of glutamate from $28{\pm}4\;to\;68{\pm}5%$ of the control. Methysergide, a serotonin receptor antagonist, also inhibited the suppression of dEMG from $33{\pm}5\;to\;79{\pm}4%$ of the control. However, phentolamine, an ${\alpha}-adrenergic$ receptor antagonist, did not affect the suppression of dEMG. These results suggest that the amygdala can modulate both cardiovascular and nociceptive responses and that the antinociception of amygdala seems to be attributed to an augmentation of descending inhibitory influences on nociceptive pathways via serotonergic and opioid pathways.

  • PDF

Numerical Study on the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve and Leaflet Behavior Using Fluid-Structure Interaction (FSI) Technique (유체-고체 상호작용 (FSI)기법을 이용한 이엽기계식 인공심장판막을 지나는 혈액유동과 판첨거동에 관한 수치해석적 연구)

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.14-22
    • /
    • 2004
  • Bileaflet mechanical valves have the complications such as hemolysis and thromboembolism, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. The first aim of the current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of the previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. A finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. As a result, it is observed that the leaflet is closing very slowly at the first stage of processing but it goes too fast at the last stage. And the results noted that the low pressure is formed behind leaflet to make the cavitation because of closing velocity three times faster than opening velocity. Also it is observed some fluttering phenomenon when the leaflet is completely opened. And the rebounce phenomenon due to the sudden pressure change of before and after the leaflet just before closing completely. The some of time-delay is presented between the inversion point of ventricle and aorta pressure and closing point of leaflet. The shear stress is bigger and the time of exposure is longer when the flow rate is maximum. So it is concluded that the distribution of shear stress at complete opening stage has big effect on the blood damage, and that the low-pressure region appeared behind leaflet at complete closing stage has also effect on the blood damage.