• Title/Summary/Keyword: Opening Pressure

Search Result 637, Processing Time 0.025 seconds

Anti-seismic Capacity Improvement of Underground Box Structures Strengthened with Pressure Bracing (가압식 브레이싱 보강에 의한 지중박스구조물의 내진성능향상 방법)

  • Chung, Jee-Seung;Moon, In-Gi;Min, Dae-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.97-102
    • /
    • 2013
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'I-bracing pressure system') is used to improve seismic capacity of the RC box structure. The I-bracing pressure system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and improved I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without I-bracing pressure system. Numerical results confirmed that the proposed I-bracing pressure system can enhance the seismic capacity of the underground RC box structures.

Pressure Variations in Intake and Exhaust Manifold of a Single Cylinder Engine (단기통 엔진의 흡.배기계의 압력 변동에 관한 연구)

  • Choi, Seuk-Cheun;Lee, Young-Hun;Lee, Sang-Chul;Chung, Han-Shik;Lee, Kwang-Young;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.775-780
    • /
    • 2003
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold in a single cylinder engine. To get the boundary conditions for a numerical analysis, one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the exhaust pipe diameters to calculate the pulsating flow when the intake and exhaust valves are working. As the results of numerical analysis, the shapes and distributions of the exhaust pipe pressures were influenced strongly on the cylinder pressure. As the exhaust pipe diameter is decreased, the amplitude of exhaust pressure is large and the cylinder pressure was showed low in the region of intake valve opening time.

  • PDF

Evaluation of Transient Performance of Carburettered Gasoline Engine (과도운전시 가솔린기관의 성능평가)

  • Cho, G.S.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.1-11
    • /
    • 1993
  • An experimental study was carried out to evaluate the characteristics of transient performance of carburettered gasoline engine under rapid accelerating transient driving conditions. In order to evaluate the characteristics of transient performance quantitatively, the concept of dead time $t_d$ response delay time $t_r$ are introduced. Performance parameters such as air mass fiowrate Gat, engine speed N, manifold boost pressure Pb, and output torque T are measured simultaneously during the rapid opening of the throttle valve by the stepping motor. During the rapid opening of the throttle valve, air mass fiowrate Gat is increased immediately without delay time, but response of engine revolution N, and output torque T are delayed. Therefore hesitation, and stumble phenomena are occurred. Dead time $t_d$ and response delay time $t_r$ of engine revolution N, which is extremely delayed comparing to other performance parameters, are respectively 0.2-0.3sec., 3.0-4.6sec., and dead time rate $t_d/{\Delta}t$ and response delay time rate $t_r/{\Delta}t$ are linearly increased with the throttle valve opening rate ${\theta}$ during the acceleration from 12 degree to 20 degree at 1250rpm.

  • PDF

A Numerical Simulations on the Flow over Ogee Spillway with Tainter Gate (테인터수문이 설치된 월류형 여수로에서의 흐름에 대한 수치모의)

  • Kim, Dae-Geun;Park, Jae-Hyun;Lee, Jae-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.675-685
    • /
    • 2004
  • In this study, overflow behaviors through a partially open tainter gate mounted on a standard ogee spillway were investigated by using the FLOW-3D. The results indicated that the discharge coefficient is in the range of 0.685 to 0.723. A relation of gate-controlled discharge to free discharge was proposed and a reasonable correlation between the free and controlled discharge was obtained. Pressures on the spillway crest and the gate were also investigated. As the gate opening rate decreases with a fixed gate opening height and the gate opening height increases at a fixed gate opening rate, negative pressures on the spillway crest and the dimensionless maximum pressures on the gate increase.

Cooling and Heating Performances of a CO2 Heat Pump with the Variations of Operating Conditions (운전조건 변화에 따른 이산화탄소 열펌프의 냉난방 성능특성 비교)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Lee, Eung-Chan;Kang, Hun;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.454-462
    • /
    • 2008
  • Since operating conditions are significantly different for heating and cooling mode operations in a $CO_2$ heat pump system, it is difficult to optimize the performance of the $CO_2$ cycle. In addition, the performance of a $CO_2$ heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed $CO_2$ heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%.

Mean and Fluctuating Pressure Coefficient Distributions for Circular Closed and Open Dome Roofs (원형 밀폐 및 개방형 돔 지붕의 평균 및 변동 풍압 계수)

  • Cheon, Dong-jin;Kim, Yong-Chul;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • In this paper, the mean and fluctuating pressure coefficients derived from the results of wind tunnel tests on closed and open dome roofs were analyzed. The distribution characteristics of the fluctuating pressure according to the opening ratio and the height change were discussed. The analysis results showed that when the roof is open, the overall wind pressure decreases due to the open space, but more fluctuation occurred than the closed dome roof.

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF

Reliability Analysis of Access Door Opening Force Measured with a Digital Force Gauge of a Pressurized Smoke Control Zone and Presentation of Optimum Conditions for the Opening Force (디지털 측정기로 측정된 급기가압 제연구역의 출입문 개방력에 대한 신뢰성 분석 및 최적 조건 제시)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.468-473
    • /
    • 2016
  • The aim of this study was to measure the opening force of an access door of a pressurized smoke control zone and verify the reliability of the opening force. For the access door opening force, the opening load of the access door was measured before and after pressurized air had entered the smoke control zone. The reliability of the measured values was verified using the Anderson Darling's statistical analysis method of the Minitab Program. Because the analyzed P values were greater than 0.05 except for some floors before and after the operation of the smoke control equipment, the opening force was found to have 95% reliability. The normal distribution of the measured values showed no relationship with the operation of the smoke control equipment and the precision of the force gauge was believed to be reliable. The major factors for the optimal design of the pressurized smoke control equipment include the precision and reliability of the force gauge, the correct posture of the measuring person, and the same conditions for access doors. Therefore, a digital force gauge is believed to be suitable for measuring the opening force of the access door of a pressurized smoke control zone. In addition, standardization of the posture of a measuring person, the setup of the initial opening force of an access door, etc., are major variables for effective measurements of the door opening force of an access door.

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

Analysis of the Wind Pressure Coefficient Characteristic of Livestock Shed Roof Surface according to the Opening of Side Walls (측벽 개방유무에 따른 축사지붕면의 풍압계수 특성분석)

  • You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • Livestock buildings are rural facilities as vulnerable to natural disasters as vinyl houses. Many of livestock buildings have a roof but without side walls. The roof of such structures is easily blown away by a typhoon and this results in a heavy loss. Therefore, farmers install winch curtains on the sides to prevent damages caused by typhoons. This study purposed to examine the distribution of wind pressure coefficient among different positions of livestock shed roof according to the opening of side walls. It was found that according to the distribution of peak external pressure coefficient on the roof surface of livestock shed, the wind blowing at wind angle $0^{\circ}$ was disadvantageous to roof surface regardless of the presence of side walls. However, it was confirmed that the peak external pressure coefficient was affected by wind angle and the length of eave depending on the presence of side walls.