• Title/Summary/Keyword: OpenGL Shading Language

Search Result 5, Processing Time 0.026 seconds

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

GLSL based Additional Learning Nearest Neighbor Algorithm suitable for Locating Unpaved Road (추가 학습이 빈번히 필요한 비포장도로에서 주행로 탐색에 적합한 GLSL 기반 ALNN Algorithm)

  • Ku, Bon Woo;Kim, Jun kyum;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Unmanned Autonomous Vehicle's driving road in the national defense includes not only paved roads, but also unpaved roads which have rough and unexpected changes. This Unmanned Autonomous Vehicles monitor and recon rugged or remote areas, and defend own position, they frequently encounter environments roads of various and unpredictable. Thus, they need additional learning to drive in this environment, we propose a Additional Learning Nearest Neighbor (ALNN) which is modified from Approximate Nearest Neighbor to allow for quick learning while avoiding the 'Forgetting' problem. In addition, since the Execution speed of the ALNN algorithm decreases as the learning data accumulates, we also propose a solution to this problem using GPU parallel processing based on OpenGL Shader Language. The ALNN based on GPU algorithm can be used in the field of national defense and other similar fields, which require frequent and quick application of additional learning in real-time without affecting the existing learning data.

GPGPU Based Real-Time Image Processing Framework on a Smartphone (스마트폰에서의 실시간 영상처리를 위한 GPGPU 기반 프레임워크 구축)

  • Lee, Man Hee;Kang, Seungheon;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.17-18
    • /
    • 2012
  • 본 논문에서는 스마트폰에서 해당 기기에 장착된 카메라로부터 실시간으로 입력되는 프리뷰 영상에 대하여 실시간으로 영상처리를 수행할 수 있는 프레임워크를 제안한다. 본 논문에서 제안하는 프레임워크의 경우 OpenGL ES 2.0 기반의 Shading Language 를 이용하여 모바일 GPU 에서 병렬처리를 수행함으로써 영상처리 알고리즘을 고속으로 적용할 수 있으며, 매 프레임의 입력 영상을 텍스처로 지정하고 연산 결과가 저장된 프레임 버퍼의 내용을 그대로 화면에 출력함으로써 메인 메모리와 GPU 메모리 사이의 자료 이동을 최소화 하였다. 현재 상용화 된 스마트폰에 제안하는 프레임워크를 이용하여 적용시킨 결과 필터링 기반의 여러 가지 영상처리 알고리즘의 실시간 처리가 가능함을 보여줌으로써 본 논문에서 제안하는 프레임워크의 실시간 활용을 확인할 수 있다.

  • PDF

A Real-Time Rendering Algorithm of Large-Scale Point Clouds or Polygon Meshes Using GLSL (대규모 점군 및 폴리곤 모델의 GLSL 기반 실시간 렌더링 알고리즘)

  • Park, Sangkun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.294-304
    • /
    • 2014
  • This paper presents a real-time rendering algorithm of large-scale geometric data using GLSL (OpenGL shading language). It details the VAO (vertex array object) and VBO(vertex buffer object) to be used for up-loading the large-scale point clouds and polygon meshes to a graphic video memory, and describes the shader program composed by a vertex shader and a fragment shader, which manipulates those large-scale data to be rendered by GPU. In addition, we explain the global rendering procedure that creates and runs the shader program with the VAO and VBO. Finally, a rendering performance will be measured with application examples, from which it will be demonstrated that the proposed algorithm enables a real-time rendering of large amount of geometric data, almost impossible to carry out by previous techniques.

Fast Multi-View Synthesis Using Duplex Foward Mapping and Parallel Processing (순차적 이중 전방 사상의 병렬 처리를 통한 다중 시점 고속 영상 합성)

  • Choi, Ji-Youn;Ryu, Sae-Woon;Shin, Hong-Chang;Park, Jong-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1303-1310
    • /
    • 2009
  • Glassless 3D display requires multiple images taken from different viewpoints to show a scene. The simplest way to get multi-view image is using multiple camera that as number of views are requires. To do that, synchronize between cameras or compute and transmit lots of data comes critical problem. Thus, generating such a large number of viewpoint images effectively is emerging as a key technique in 3D video technology. Image-based view synthesis is an algorithm for generating various virtual viewpoint images using a limited number of views and depth maps. In this paper, because the virtual view image can be express as a transformed image from real view with some depth condition, we propose an algorithm to compute multi-view synthesis from two reference view images and their own depth-map by stepwise duplex forward mapping. And also, because the geometrical relationship between real view and virtual view is repetitively, we apply our algorithm into OpenGL Shading Language which is a programmable Graphic Process Unit that allow parallel processing to improve computation time. We demonstrate the effectiveness of our algorithm for fast view synthesis through a variety of experiments with real data.