• Title/Summary/Keyword: OpenFLow

Search Result 1,541, Processing Time 0.042 seconds

A Study on Effects of the Fluid Flow Inner the Open Chamber by Baffle (배플에 의한 개방챔버 내부 유동의 영향에 관한 연구)

  • No, Byeang-Su;Choi, Joo-Yol;Jungr, Ha-Gyoon;Choe, Sang-Bom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.255-260
    • /
    • 2015
  • Flash evaporation phenomenon is affected by temperature, pressure and water level in the open chamber and Baffle etc. In this study, PIV experiments were conducted to ensured the flow Characteristics in the open chamber, and optimum baffle location and baffle height. Baffle had a considerable effect on the recirculation flow, hydraulic jump and the flow characteristics in the Open chamber, and influence of Reynolds number was insignificant. The optimum baffle height was about h/H=1.5. and optimum baffle location was x/H=1.5 from the inlet of open chamber.

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

Optimal Path Algorithm for QoS in OpenFlow-based Network (OpenFlow 기반의 네트워크에서 QoS를 보장하는 최적의 경로 생성 알고리즘)

  • Moon, Seung-Il;Kang, Hyeong-Kyu;Hong, Choong-Seon;Lee, Sung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.418-420
    • /
    • 2012
  • 정보화 사회로 발전하고 네트워크가 큰 폭으로 발전함에 따라 사회에 대한 네트워크의 의존도가 커져 가고 있다. 그러나 네트워크가 발전할수록 미래의 다양한 사용자 요구사항 및 새로운 네트워크의 한계성이 나타나고 있다. 이러한 문제를 해결하기 위한 방안 중 하나로 OpenFlow기법이 제안되었다. 본 논문에서는 이러한 OpenFlow기반의 네트워크를 관리하기 위해 VN Manager(Virtual Network Manager)와 이를 활용한 경로 관리 프로그램을 구현하였다. 또한 경로 생성시 QoS를 보장하기 위해 Admission Control이 가능하도록 하였다.

A Study on Application Service Delivery through Virtual Network Topology Allocation using OpenFlow based Programmable Network (OpenFlow 기반 Programmable Network에서 Virtual Network Topology 구성을 통한 응용 서비스 제공 방안 연구)

  • Shin, Young-Rok;Biao, Song;Huh, Eui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.590-593
    • /
    • 2012
  • 현재 인터넷은 하드웨어 종속적인 특징을 가지고 있어 급변하는 환경에 적응하기 힘들다. 이러한 제약사항은 관련 산업 발전을 더디게 하고 있다. 이와 같은 네트워크 환경에서 산업 발전을 위하여 네트워크 인프라에 유연성을 제공할 수 있는 기술의 개발이 필요하다. 그러한 문제를 해결하기 위해 오픈프로토콜인 OpenFlow의 Programmable Network의 특성을 이용하여 네트워크 가상화를 구현하였으며, 응용 서비스별 Virtual Network를 제공하는 방안에 대해 연구하였다. 이를 위하여 OpenFlow 기반의 Programmable Network를 구축하였으며, 동적으로 구성이 가능한 네트워크에서 가상화를 제공하기 위해 VNAPI를 개발하였다. 또한, VNAPI를 통하여 신뢰성 있고 효율적인 응용 서비스의 전달을 위하여 Virtual Network Topology에 대한 설계를 같이 수행하였다.

FLOW CHARACTERISTICS AROUND A RUDDER IN OPEN LATER CONDITION (단독 타 주위의 유동 특성에 대한 연구)

  • Choi, J.E.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • The flow characteristics around a rudder in open water condition is analyzed by the computational method. Reynolds averaged Navier-Stoke's equation is utilized for the computation. The computational hydrodynamic force coefficients are verified through comparing with the experimental results. The information of these flow characteristics is necessary to predict cavitation and maneuvering performances, to estimate steering gear capacitance, and to get the bending moment which is useful for the structural analysis. The pressure distribution, the three-dimensional flow separation, and the tip vortices are investigated. The pattern of the three-dimensional flow separation is analyzed utilizing a topological rule. The tip vortices are also investigated through a visualization technique.

An Experimental Study on the Centrifugal Pump Characteristics in Air-Water Two-Phase Flow (기액 이상류시의 원심펌프특성에 관한 실험적 연구)

  • Kim, Sung-Yoon;Lee, Sang-Il;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.685-692
    • /
    • 2006
  • In a general centrifugal pump, if it is operated in a two-phase flow the activity of the impeller usually degrades and occasionally losses its function. However, the effect of break down of centrifugal pump due to entrained air has not been clarified yet. This paper shows the air-water two-phase flow characteristics of closed type and semi-open type impellers. In a sing1e-phase flow, closed-type impeller has higher efficiency and head. But in air-water two-phase flow semi-open type impeller's rates of decreases of efficiency and head are decreased.

Pressurized Pneumatic Grit Conveying Characteristics in Pipeline for Open Blasting Robot (오픈 블라스팅 로봇에서 관로내의 그리트 가압이송 특성)

  • Kim, Won-Bae;Yang, Seok-Won;Lee, Sang-Bum;Kim, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1185-1189
    • /
    • 2007
  • In this paper, to improve the efficiency of pressurized pneumatic grit conveying for ship block open blasting process. Pressurized pneumatic grit conveying is defined as the transportation of grit(abrasive) in a compressed air flow. Total Pressure loss in flexible hose for pneumatic conveying is sum of pressure losses due to gas and grit and needle type pressure transmitter for measured pressure loss. haracteristics of grit open blasting by pneumatic conveying were studied experimentally. Studies variables were blasting nozzle ID, length and ID of flexible hose, grit flow rate, flow rate and pressure of transport air. It was experimentally proved that optimal open blasting condition and cost effective operation regarding grit blasting, obtaining a high qulity surface preparation(Sa $2^{\frac{1}{2}}$).

  • PDF

Experimental Study of Flow Resistance and Flow Characteristics over Flexible Vegetated Open Channel (개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰)

  • Yeo, Hong Koo;Park, Moonhyeong;Kang, Joon Gu;Kim, Taewook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.61-74
    • /
    • 2004
  • Hydraulic engineers and scientists working on river restoration recognize the need for a deeper understanding of natural streams as a complex and dynamic system, which involves not only abiotic elements(flow, sediments) but also biotic components. From this point of view, the role played by riverine vegetation dynamics and flow conditions becomes essential. Hydro-mechanic interaction between flow and flexible plants covering a river bed is studied in this paper and some previous works are discussed. Measurements of turbulence and flow resistance in vegetated open channel were performed using rigid and flexible tube. Measuring detailed turbulent velocity profiles within and above submerged and flexible stems allowed to distinguish different turbulent regimes. Some interesting relationships were obtained between the velocity field and the deflected height of the plants, such as a reduced drag coefficient in the flexible stems. Turbulent intensities and Reynolds stresses were measured showing two different regions : above and inside the vegetation domain. In flexible vegetated open channel, the maximum values of turbulent intensities and Reynolds stresses appear above the top of canopy. Method to predict a flow resistance in flexible vegetated open channel is developed by modifying an analytical model proposed by Klopstra et al. (1997). Calculated velocity profiles and roughness values correspond well with flume experiments. These confirm the applicability of the presented model for open channel with flexible vegetation. The new method will be verified in the real vegetated conditions in the near future. After these verifications, the new method should be applied for nature rehabilitation projects such as river restorations.

Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel (사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구)

  • Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.239-245
    • /
    • 2009
  • Levees, the hydro-engineering structure, are similar to earth dams in aspects of shape and structure. However, they are different from earth dams in the external force conditions. As a levee is the structure that is complexly affected by the flow and the water stage in the river, it may be unreasonable to analyze the seepage safety as previous studies derived from the neglect of river flow. In this study, an experiment was conducted to investigate flow structures in a trapezoidal open-channel and the influence of the channel flow on the seepage through a levee. Flow structures in a trapezoidal open-channel were distinguished from a rectangular open-channel such as velocity and bottom shear stress distributions. In case with the flow velocity of 0.5 m/s, seepage water heads were higher 10 percent as compared with the stagnant case. This result is caused by dynamic heads, secondary currents, turbulent fluctuation forces, and various physical factors. It is suggested that external force boundary considered in terms of the flow as well as the water stage is proper to seepage analyses.