군집주행은 여러 대의 자율 주행 차량이 통신을 사용하여 서로 정보를 교환하며 하나의 군집을 이루어 주행하는 것이다. 이러한 군집주행 기술은 더 좁은 차량 간 간격을 유지하며 주행함으로써 도로의 통행량 증대, 에너지 소비 및 오염물질 배출 감소 등의 다양한 장점을 가진다. 그러나 군집주행의 좁은 차량 간 간격은 긴급한 사고 발생 시 대처를 더 어렵게 만들며, 이에 따라 필수적으로 확보되어야 할 군집주행의 안전성을 보장하는데 어려움을 주고 있다. 특히 주행 중 나타날 수 있는 가변성은 군집주행의 안전에 악영향을 미칠 수 있다. 이러한 가변성은 발생 예측이 어렵고, 재현이 어려운 특성으로 인해 가변성으로부터 발생하는 위험 요소를 방지하는 안전대책 마련에 어려움이 있다. 본 논문에서는 군집주행 중에 생겨날 수 있는 가변성에 따른 위험을 회피하기 위한 시뮬레이션 방법을 연구하였다. 이를 위해 가변성을 고려하는 다양한 시나리오를 개발하고, 가변성을 핸들링할 수 있는 안전 대책을 고안, 적용하였으며, 또한 오픈소스 군집주행 시뮬레이터인 VENTOS를 확장하여 시나리오 시뮬레이션을 수행하였다. 그 결과 가변성으로 인한 군집주행의 위험성을 제거하여 안전한 군집주행이 가능함을 확인하였다. 제시하는 가변성 대응 시나리오 시뮬레이션은 군집주행에서의 안전성을 확보하기 위한 연구 개발에 기여할 것으로 판단한다.
차세대 와이파이 표준기술인 IEEE 802.11ay는 밀리미터파 대역에서 AP (Access Point)가 다수의 STA (Station)로 동시에 데이터를 전송하도록 MU-MIMO (Multiple User Multiple Input Multiple Output) 통신을 지원한다. 이를 위해, 주기적으로 MU-MIMO 빔포밍 훈련을 수행해야 하고, 효율적인 빔포밍 훈련을 위해서는 AP가 다수의 안테나로 다수의 빔을 동시에 전송할 때, 각 STA에서 측정되는 신호 세기를 정확히 예측하는 것이 중요하다. 본 논문에서는 딥러닝 기반 다중 빔 전송링크 성능 예측기법을 제안한다. 제안한 예측기법은 특정 실내 또는 실외 환경에서 미리 학습된 딥러닝 모델을 이용하여 다수의 빔이 동시에 전송될 때 STA에서 측정되는 신호 세기 예측의 정확성을 높인다. 이때, 딥러닝의 입력으로 개별 빔이 전송될 때 STA에서 측정되는 신호 세기 정보를 이용하고, 개별 빔의 신호 세기 정보를 얻는 과정은 이미 기존의 빔포밍 훈련에 포함되어 있으므로 정보 수집을 위해 추가적인 비용을 발생하지 않는다. 성능평가를 위해 NIST (National Institute of Standards and Technology)에 의해 개발된 Q-D 채널구현 (Quasi-Deterministic Channel Realization) 오픈소스 소프트웨어를 활용하였고 실측 데이터 기반으로 밀리미터파 채널을 구현하였다. 실험결과에서는 제안한 예측기법이 다른 비교기법보다 향상된 예측성능을 보였다.
본 연구는 전거레코드 구축 및 공유를 위한 목적으로 진행된 'Social Networks and Archival Context' 프로젝트 사례를 통해 문화유산기관 간에 분산 소장된 역사적 정보원에 대한 통합적 접근과 기록에 대한 보다 풍부한 검색과 이해를 촉진하는 국가적 전거데이터베이스 구축의 필요성과 국내 적용 방안을 제시하였다. SNAC 프로젝트는 NARA 주도의 국제적 협력체 조직으로 전환되면서 지속가능한 운영체계를 확보하고 협력적 전거통제를 실현할 수 있었다. 또한 SNAC 전거레코드는 도서관에 비해 풍부한 생애와 역사에 관한 맥락 정보와 사회적·지적 네트워크 정보를 제공한다는 특징을 가진다. 사례분석을 통해 첫째, SNAC 처럼, 국가기록원이 주도하고 국립중앙도서관이 공동 오너쉽을 갖는 협력체가 개발을 주도하고 참여기관의 범위를 넓혀나가야 한다. 둘째, 협력의 방식에서 특장점을 가진 분야별로 분담하는 구조를 취하되, 두 기관이 참여하는 운영 주체가 주요한 의사결정을 하도록 한다. 셋째, 전거데이터 구축 시 다양한 포맷의 기술정보를 수집할 수 있는 확장가능한 오픈소스소프트웨어 개발, 기록관리 전거레코드의 구조와 요소로 설계, 전거레코드의 품질을 통제할 수 있는 기능 설계, 이용자 친화적 인터페이스 구축 및 콘텐츠적 요소가 반영된 플랫폼 설계가 필요함을 제시하였다.
최근 건축물의 노령화에 따른 건물 전체 기능저하와 화재 및 지반침하와 같은 재난에 따른 건축물의 안정성 저하로 구조물 해체 수요가 급격히 증가하는 추세이다. 특히, 구조물 구성부위의 변형이나 손상의 정도가 심각한 구조물은 부재 내 집중하중이 발생하여 구조물 전체의 안정성이 저하되어 빠른 시일 내에 안전하게 구조물 해체가 가능한 시공기술에 대한 수요가 증가하고 있다. 또한, 노후 구조물에 대한 비인가 증축이나 불법 개조와 같은 구조적 변경으로 시공 당시 건물의 설계도면과 상이한 경우가 빈번하다고 보고되어오고 있다. 본 연구에서는 해체 대상 구조물의 시공 당시 도면과 현 시점 구조와의 차이점을 보완하기 위하여, 실내외 구조 표면에 대한 실측값을 활용하여 3차원 모델을 역설계하는 기법을 제안하였다. 실제 해체 시공 예정인 건축물을 대상으로 구조물 외곽에 대하여 드론 촬영을 실시하고 구조물 내부는 LiDAR 스캐닝을 수행하여 건물외곽과 실내에 대한 점군데이터를 획득한다. 각각 점군데이터는 Smartmapper를 활용하여 정밀하게 정합되며 2차원 도면제작과 3차원 구조해석용 모델 작성에 사용된다. 제안된 역설계 기법을 검증하기 위하여 드론화상자료, LiDAR 스캐너자료, 정합자료로부터 생성된 3차원 모델과 실측된 부재간의 거리를 비교하였다.
오늘날 소위 디지털 전환시대를 맞아, 많은 부분에서 빅데이터의 구축과 활용에 대한 필요성이 높아졌다. 오늘날에 많은 데이터가 디지털기기, 미디어 친화적으로 생산 및 보관되는 것과 달리, 과거 오랜 기간 데이터의 생산 및 보관은 활자 인쇄도서가 주를 이루었다. 따라서 오랜 기간 축적되어온 방대한 활자 인쇄도서를 빅데이터로써 활용하기 위한 광학 문자 판독(OCR: Optical Character Recognition) 기술의 필요성 역시 빅데이터의 필요성에 맞추어 함께 요구되었다. 본 연구에서는 도서 스캔 이미지의 정보를 각 문서 객체별로 세분화하여 그 구조와 내용을 디지털화하는 시스템을 제안한다. 제안 시스템은 크게 1) 문서객체(표, 수식, 그림, 본문)의 영역정보를 인식. 2)인식된 객체의 영역정보를 각각 표 처리, 수식 처리, 텍스트 처리 모듈로 OCR. 3) OCR로 처리된 문서 정보를 JSON형식으로 종합하여 반환하는 세 단계로 구성된다. 본 연구에서 제안하는 모델은 이러한 단계를 수행함에 있어 오픈소스로 공개된 프로젝트를 활용하되, 본 시스템의 목표에 맞추어 추가적인 학습과 개량을 거쳤다. 본 연구에서 제안한 지능형 OCR 시스템은 문서 이미지 내 4종(표, 수식, 이미지, 텍스트)의 객체인식과 처리에 있어 상용 소프트웨어 수준의 성능을 확인할 수 있었다.
오령산은 몸 속의 수분을 순환시키고 소변으로 배출이 잘 되게 하는 효능이 있어 수분이 정체되어 나타나는 질환에 많이 쓰이는 처방이다. 본 연구에서는 시스템 약리학 접근 방법을 이용해서 오령산의 작용 기전을 탐색하기 위해서 오령산의 구성약재의 성분-타겟 네트워크를 구축하고 분석하였다. 우선, 오령산의 475개 성분에 대해서 STITCH 데이터베이스에서 연관된 타겟을 검색하였으며, 성분과 타겟의 상호작용에 대한 검색 결과는 XML 파일로 다운로드하였다. 본 연구에서 성분-타겟 네트워크는 Gephi를 이용해서 시각화하고 탐색하였다. 노드는 성분과 타겟이 되고, 링크는 성분과 타겟들간에 상호작용이 존재하면 연결되며, 상호작용의 신뢰도에 따라 링크에 가중치를 부여하였다. MCL 알고리즘을 이용해서 네트워크를 클러스터링 하였으며, 총 130개의 클러스터가 생성되었다. 가장 많은 노드를 가지는 클러스터에서 노드의 개수는 32개였다. 성분-타겟 네트워크에서 약재의 유효 성분들이 신장의 혈압 조절 기능과 관련된 타겟들과 연결되어 있는 것을 발견할 수 있었다. 향후에는 질병 데이터베이스와 연계해서 보다 명확한 오령산의 작용 기전을 밝힐 수 있도록 할 계획이다.
본 연구에서는 오픈소스 소프트웨어와 인공지능 문서 분류 모델인 한국어 Sentence-BERT로 고등학교 1학년 통합과학 질문-답변 챗봇을 제작하고 2023학년도 1년 동안 독립형 서버에서 운영했다. 챗봇은 Sentence-BERT 모델로 학생의 질문과 가장 유사한 질문-답변 쌍 6개를 찾아 캐러셀 형태로 출력한다. 질문-답변 데이터셋은 인터넷에 공개된 자료를 수집하여 초기 버전을 구축하였고, 챗봇을 1년 동안 운영하면서 학생의 의견과 사용성을 고려하여 자료를 정제하고 새로운 질문-답변 쌍을 추가했다. 2023학년도 말에는 총 30,819개의 데이터셋을 챗봇에 통합하였다. 학생은 챗봇을 1년 동안 총 3,457건 이용했다. 챗봇 사용 기록을 빈도분석 및 시계열 분석한 결과 학생은 수업 중 교사가 챗봇 사용을 유도할 때 챗봇을 이용했고 평소에는 방과 후에 자습하면서 챗봇을 활용했다. 학생은 챗봇에 한 번 접속하여 평균적으로 2.1~2.2회 정도 질문했고, 주로 사용한 기기는 휴대폰이었다. 학생이 챗봇에 입력한 용어를 추출하고자 한국어 형태소 분석기로 명사와 용언을 추출하여 텍스트 마이닝을 진행한 결과 학생은 과학 질문 외에도 시험 범위 등의 학교생활과 관련된 용어를 자주 입력했다. 학생이 챗봇에 자주 물어본 주제를 추출하고자 Sentence-BERT 기반의 BERTopic으로 학생의 질문을 두 차례 범주화하여 토픽 모델링을 진행했다. 전체 질문 중 88%가 35가지 주제로 수렴되었고, 학생이 챗봇에 주로 물어보는 주제를 추출할 수 있었다. 학년말에 학생을 대상으로 한 설문에서 챗봇이 캐러셀 형태로 결과를 출력하는 형태가 학습에 효과적이었고, 통합과학 학습과 학습 목적 이외의 궁금증이나 학교생활과 관련된 물음에 답해주는 역할을 수행했음을 확인할 수 있었다. 본 연구는 공교육 현장에서 학생이 실제로 활용하기에 적합한 챗봇을 개발하여 학생이 장기간에 걸쳐 챗봇을 사용하는 과정에서 얻은 데이터를 분석함으로써 학생의 요구를 충족할 수 있는 챗봇의 교육적 활용 가능성을 확인했다는 점에 의의가 있다.
딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.
Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.
기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.