• 제목/요약/키워드: Open loop stiffness

검색결과 13건 처리시간 0.027초

Electrically-induced actuation for open-loop control to cancel self-excitation vibration

  • Makihara, Kanjuro;Ecker, Horst
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.189-206
    • /
    • 2012
  • This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variable-stiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electrically-induced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

변환요소에 따른 LOOPED WIRE의 탄성 변화에 관한 연구 (A STUDY ON THE CHANGES OF THE ELASTIC PROPERTIES TN LOOPED WIRES BY VARIABLE FACTORS)

  • 나용인;김상철
    • 대한치과교정학회지
    • /
    • 제25권3호
    • /
    • pp.263-271
    • /
    • 1995
  • Canine retraction spring과 같은 looped wire에서, 각 변환요소에 따라 변하는 탄성 정도를 알아보기 위하여, wire의 재료, 굵기, loop에 소요된 길이, loop의 모양, gabling의 여부 등 5가지의 변환요소를 설정하여, 각 wire activation시의 탄성을 range, force, stiffness등의 면에서 알아보고자 하였다. wire의 재료적인 면에서 Hi-T (Unitek Co.)와 blue Elgiloy (Rocky Mountain Orthodontics)를 선택하였으며, 굵기로는 .016"$\;\times\;$.022" 와 .018"$\;\times\;$.025"를 선택하였다. loop 자체에 소요된 wire 길이를 15mm와 20mm의 두가지로, loop의 모양을 vertical open loop과 vertical closed loop의 두가지로, gabling의 양을 $0\circ$$30\circ$의 두가지로 하여 각각 제작하였다. 따라서 wire의 재료와 굵기, loop의 길이와 모양, gabling의 5가지 변환요소에 따라 32개군으로 구분되었으며, 각 군의 시료수는 8개씩으로, 총 256개의 시료를 대상으로 하였다. Instron(4202, Instron Co, USA)을 사용하여 각 시료의 하중변형 곡선을 얻었으며 elastic limit에서의 하중과 변형을 계측하고, 그때의 stiffness(force/range)를 산출하여, ANOVA 등의 통계처리로 32개군 간의 상관성을 조사하였다. 그 결과 wire의 재료, 굵기, loop의 길이, 모양, gabling모두가 looped wire의 하중 변형도에 유의한 영향을 미치는 것을 관찰할 수 있었으며, 탄성범위에서의 force는 Hi-T, .016"$\;\times\;$.022", loop 길이 20mm, open loop, non-gable군에서 가장 적었으며, blue Elgiloy, .018"$\;\times\;$.025", loop 길이 15mm, closed loop, non-gable군에서 가장 컸다. 탄성범위에서의 range는 Hi-T, .018"$\;\times\;$.025", loop길이 15mm, open loop, non-gable군이 가장 적었으며, Hi-T, .016"$\;\times\;$.022", loop길이 20mm, closed loop, gable군에서 가장 컸다. 또한 Looped wire의 탄성에 가장 큰 영향을 미치는 변환요소는 loop의 모양과 길이였으며, gabling의 영향이 가장 적었다.

  • PDF

개루프제어로 이송되는 공작기계 구조물의 동적 거동을 위한 유한 요소 해석 (Finite element analysis for dynamic behavior of a machine tool structure fed in open loop control)

  • 최진우;이태홍
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.596-602
    • /
    • 2010
  • In this study, a fmite element model was developed for analysis of feeding a structure in open loop control The finite element analysis (FEA) can simulate dynamic behavior of the structure of a machine tool rapidly traveling with a screw feeding driving system. The feeding mechanism was implemented with screw element of the FEA tool used in this study. The procedure was developed for the dynamic transient FEA. First, motion parameters such as jerk and velocity were introduced for the structure to be fed in open loop control When its traveling distance was determined, set-points for the distance were generated based on the motion parameters. The set-points were applied to the FE model constructed for the traveling structure. The FEA was executed and evaluated. In this study, the FEA procedure was applied to the column of a machine tool and the dynamic behavior of the column was evaluated. The FEA helps in evaluation of the motion characteristics of a structure. The convergence time of the structure vibration posterior to feeding termination can be estimated and the stiffness of the flexible structure is also evaluated against jerk, and acceleration. It provides the feeding force which is helpful in selection of the feeding motor.

분산 자기 회로를 이용한 베어링리스 모터의 모델링 (Modeling of a bearingless motor using distributed magnetic circuit)

  • 박창용;박수진;노명규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.212-216
    • /
    • 2004
  • Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.

  • PDF

분산 자기 회로를 이용한 베어링리스 모터의 모델링

  • 노명규;박수진;박창용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.80-80
    • /
    • 2004
  • 베어링리스 모터는 기존의 전동기와 자기베어링을 결합한 기술로 축 길이가 줄어들어 회전 속도를 높일 수 있으며 소형화가 가능하다는 장점이 있다(Fig. 1). 베어링리스 모터를 설계하기 위한 첫 번째 단계는 베어링리스 모터의 수학적 모델을 도출하는 것인데, 기존의 연구에서 부상용 전류와 부상력의 관계는 잘 정립되어 있다. 그러나, 회전자의 변위에 따른 부상력의 변화는 명확히 정의되어 있지 안다. 본 논문에서는 분산 자기 회로 이론을 이용하여 회전자의 움직임에 따른 부상력의 변화를 스프링계수의 형태로 모델링하였다.(중략)

  • PDF

Preisach 모델을 이용한 압전액츄에이터 이력 보상 (Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion)

  • 정치연;이대희;김호상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

마이크로 프레스용 고하중/대변위 액츄에이터 개발 (Development of High Load/Large Displacement Actuator for Micro-press)

  • 김병희;남권선;최종필;김헌영;이낙규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.458-461
    • /
    • 2005
  • In this paper, a new type of inchworm motion actuator is developed in fabrication of actuators for micro-press machine. This is consisted of three piezoelectric actuators, one is for moving the tool guide and the other are for clamping the guide. The inchworm motor provides both high load and large displacement in small size actuator. PZT has compressive strength and often fails under tensile stress and pulling. Thus, in order to prevent failure, we have designed pre-load housing and accomplished FEM analysis. The pre-load housing was used for determining the optimal design condition by comparing the von-mises stresses with the change of hinge stiffness. Also, in order to predict the performance of the motor under certain conditions, the system model was simulated using MATLAB. This is open loop control actuator and driven by the period of input voltage.

  • PDF

4상과 5상 스텝모터의 모델링 및 구동방식에 따른 토크특성해석 (Modeling And Analysis of Torque Characteristics for Full-step of 4Phase And 5Phase Hybrid Type Step Motors)

  • 최두성;백수현;김용;윤신용;김철진;임태빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.37-39
    • /
    • 1998
  • The hybrid step motor has found applications in a wide range of mechanical systems as a low cost, open-loop positioning device. The step motor provides good stiffness at rest against disturbing load influences, a combination of moderate speed fine resolution, high reliability and simplicity. In recent years, considerable competition has arisen over the technological issue of wheather the device should be applied as a 2-Phase or 5-Phase machine. In this paper, to compare two systems, we have atempted to derive the mathematical. model, and analysed operating detent torque with this model. The analysis shows that a fundamental component of the permeance distribution produces the average torque and that harmonic components produce the ripple torque.

  • PDF